Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 1559 by 123456 last updated on 19/Aug/15

find complex number α,β such that  α^n =β^m   β^u =α^v   n,m,u,v∈Z  Q1498

$$\mathrm{find}\:\mathrm{complex}\:\mathrm{number}\:\alpha,\beta\:\mathrm{such}\:\mathrm{that} \\ $$$$\alpha^{{n}} =\beta^{{m}} \\ $$$$\beta^{{u}} =\alpha^{{v}} \\ $$$${n},{m},{u},{v}\in\mathbb{Z} \\ $$$$\boldsymbol{{Q}}\mathrm{1498} \\ $$

Answered by Rasheed Soomro last updated on 19/Aug/15

Let gcd(m,u)=k ⇒ lcm(m,u)=((mu)/k)  (α^n )^(u/k) =(β^( m) )^(u/k)  ⇒α^((nu)/k) =β^((mu)/k)             ........(I)   (β^( u) )^(m/k) =(α^v )^(m/k)  ⇒β^( ((mu)/k)) =α^((mv)/k)            .........(II)  [In order to acheive the common exponent(least also)  of β]  From (I) and (II)      α^((nu)/k) =α^((mv)/k) ⇒nu=mv   [This condition is regardless                    of value of α and β]     α^((nu)/k) − α^((mv)/k) =0     α^((mv)/k) (α^(((nu)/k)−((mv)/k)) −1)=0 ⇒   α^((mv)/k) =0 ∨  α^(((nu)/k)−((mv)/k)) −1=0      α=0 ∨ α^(((nu)/k)−((mv)/k)) =1  [You may equally proceed as         α^((nu)/k) (1−α^(((mv)/k)−((nu)/k)) )=0 ⇒α^((nu)/k) =0 ∨ 1−α^(((mv)/k)−((nu)/k)) =0  ⇒ α=0 ∨ α^(((mv)/k)−((nu)/k)) =1⇒α^(((nu)/k)−((mv)/k)) =(1)^(−1) =1 same as above.]    So α=^((nu−mv)/k) (√1)  I−E  α is ( ((nu−mv)/(gcd(m,u))) )th root of unity.  Similar process shows that  β=0 ∨ β  is   ( ((nu−mv)/(gcd(n,v))) )th  root of unity.  Solution for α      {0}∪{1,ω,ω^2 ,......ω^((((nu−mv)/(gcd(m,u)))−1)) }; ω is ( ((nu−mv)/(gcd(m,u))) )th root of unity.  Solution for β      {0}∪{1,μ,μ^2 ,....μ^((((nu−mv)/(gcd(n,v)))−1)) }; μ is ( ((nu−mv)/(gcd(n,v))) )th  root of unity.  Let (α,β)=(ω^( p)  ,μ^q ) such that       α^n =β^( m)  ∧ β^( u) =α^v        (ω^( p) )^n =(μ^q )^m   ∧   (μ^q )^u =(ω^( p) )^v       ω^(np) =μ^(mq)    ∧    μ^(uq) =ω^( vp)   On simplication we get       mv=nu   ,  Which is free of  p  and   q   and  that means  p  and  q may be any integers.  Hence if            A_α ={1,ω,ω^2 ,......ω^((((nu−mv)/(gcd(m,u)))−1)) }    and   A_β ={1,μ,μ^2 ,....μ^((((nu−mv)/(gcd(n,v)))−1)) }  , the solution for pair  (α,β)  is whole  A_α ×A_β

$${Let}\:{gcd}\left({m},{u}\right)={k}\:\Rightarrow\:{lcm}\left({m},{u}\right)=\frac{{mu}}{{k}} \\ $$$$\left(\alpha^{{n}} \right)^{\frac{{u}}{{k}}} =\left(\beta^{\:{m}} \right)^{\frac{{u}}{{k}}} \:\Rightarrow\alpha^{\frac{{nu}}{{k}}} =\beta^{\frac{{mu}}{{k}}} \:\:\:\:\:\:\:\:\:\:\:\:........\left(\boldsymbol{{I}}\right)\: \\ $$$$\left(\beta^{\:{u}} \right)^{\frac{{m}}{{k}}} =\left(\alpha^{{v}} \right)^{\frac{{m}}{{k}}} \:\Rightarrow\beta^{\:\frac{{mu}}{{k}}} =\alpha^{\frac{{mv}}{{k}}} \:\:\:\:\:\:\:\:\:\:\:.........\left(\boldsymbol{{II}}\right) \\ $$$$\left[{In}\:{order}\:{to}\:{acheive}\:{the}\:{common}\:{exponent}\left({least}\:{also}\right)\:\:{of}\:\beta\right] \\ $$$${From}\:\left(\boldsymbol{{I}}\right)\:{and}\:\left(\boldsymbol{{II}}\right) \\ $$$$\:\:\:\:\alpha^{\frac{{nu}}{{k}}} =\alpha^{\frac{{mv}}{{k}}} \Rightarrow{nu}={mv}\:\:\:\left[{This}\:{condition}\:{is}\:{regardless}\:\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{of}\:{value}\:{of}\:\alpha\:{and}\:\beta\right] \\ $$$$\:\:\:\alpha^{\frac{{nu}}{{k}}} −\:\alpha^{\frac{{mv}}{{k}}} =\mathrm{0} \\ $$$$\:\:\:\alpha^{\frac{{mv}}{{k}}} \left(\alpha^{\frac{{nu}}{{k}}−\frac{{mv}}{{k}}} −\mathrm{1}\right)=\mathrm{0}\:\Rightarrow\:\:\:\alpha^{\frac{{mv}}{{k}}} =\mathrm{0}\:\vee\:\:\alpha^{\frac{{nu}}{{k}}−\frac{{mv}}{{k}}} −\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\alpha=\mathrm{0}\:\vee\:\alpha^{\frac{{nu}}{{k}}−\frac{{mv}}{{k}}} =\mathrm{1} \\ $$$$\left[{You}\:{may}\:{equally}\:{proceed}\:{as}\:\right. \\ $$$$\:\:\:\:\:\:\alpha^{\frac{{nu}}{{k}}} \left(\mathrm{1}−\alpha^{\frac{{mv}}{{k}}−\frac{{nu}}{{k}}} \right)=\mathrm{0}\:\Rightarrow\alpha^{\frac{{nu}}{{k}}} =\mathrm{0}\:\vee\:\mathrm{1}−\alpha^{\frac{{mv}}{{k}}−\frac{{nu}}{{k}}} =\mathrm{0} \\ $$$$\left.\Rightarrow\:\alpha=\mathrm{0}\:\vee\:\alpha^{\frac{{mv}}{{k}}−\frac{{nu}}{{k}}} =\mathrm{1}\Rightarrow\alpha^{\frac{{nu}}{{k}}−\frac{{mv}}{{k}}} =\left(\mathrm{1}\right)^{−\mathrm{1}} =\mathrm{1}\:{same}\:{as}\:{above}.\right] \\ $$$$\:\:{So}\:\alpha=^{\frac{{nu}−{mv}}{{k}}} \sqrt{\mathrm{1}} \\ $$$${I}−{E}\:\:\alpha\:{is}\:\left(\:\frac{{nu}−{mv}}{{gcd}\left({m},{u}\right)}\:\right)\boldsymbol{{th}}\:{root}\:{of}\:{unity}. \\ $$$${Similar}\:{process}\:{shows}\:{that} \\ $$$$\beta=\mathrm{0}\:\vee\:\beta\:\:{is}\:\:\:\left(\:\frac{{nu}−{mv}}{{gcd}\left({n},{v}\right)}\:\right)\boldsymbol{{th}}\:\:{root}\:{of}\:{unity}. \\ $$$${Solution}\:{for}\:\alpha \\ $$$$\:\:\:\:\left\{\mathrm{0}\right\}\cup\left\{\mathrm{1},\omega,\omega^{\mathrm{2}} ,......\omega^{\left(\frac{{nu}−{mv}}{{gcd}\left({m},{u}\right)}−\mathrm{1}\right)} \right\};\:\omega\:{is}\:\left(\:\frac{{nu}−{mv}}{{gcd}\left({m},{u}\right)}\:\right)\boldsymbol{{th}}\:{root}\:{of}\:{unity}. \\ $$$${Solution}\:{for}\:\beta \\ $$$$\:\:\:\:\left\{\mathrm{0}\right\}\cup\left\{\mathrm{1},\mu,\mu^{\mathrm{2}} ,....\mu^{\left(\frac{{nu}−{mv}}{{gcd}\left({n},{v}\right)}−\mathrm{1}\right)} \right\};\:\mu\:{is}\:\left(\:\frac{{nu}−{mv}}{{gcd}\left({n},{v}\right)}\:\right)\boldsymbol{{th}}\:\:{root}\:{of}\:{unity}. \\ $$$${Let}\:\left(\alpha,\beta\right)=\left(\omega^{\:{p}} \:,\mu^{{q}} \right)\:{such}\:{that} \\ $$$$\:\:\:\:\:\alpha^{{n}} =\beta^{\:{m}} \:\wedge\:\beta^{\:{u}} =\alpha^{{v}} \\ $$$$\:\:\:\:\:\left(\omega^{\:{p}} \right)^{{n}} =\left(\mu^{{q}} \right)^{{m}} \:\:\wedge\:\:\:\left(\mu^{{q}} \right)^{{u}} =\left(\omega^{\:{p}} \right)^{{v}} \\ $$$$\:\:\:\:\omega^{{np}} =\mu^{{mq}} \:\:\:\wedge\:\:\:\:\mu^{{uq}} =\omega^{\:{vp}} \\ $$$${On}\:{simplication}\:{we}\:{get} \\ $$$$\:\:\:\:\:{mv}={nu}\:\:\:,\:\:{Which}\:{is}\:{free}\:{of}\:\:{p}\:\:{and}\:\:\:{q}\:\:\:{and}\:\:{that}\:{means} \\ $$$${p}\:\:{and}\:\:{q}\:{may}\:{be}\:{any}\:{integers}. \\ $$$${Hence}\:{if} \\ $$$$\:\:\:\:\:\:\:\:\:\:{A}_{\alpha} =\left\{\mathrm{1},\omega,\omega^{\mathrm{2}} ,......\omega^{\left(\frac{{nu}−{mv}}{{gcd}\left({m},{u}\right)}−\mathrm{1}\right)} \right\}\:\: \\ $$$${and}\:\:\:{A}_{\beta} =\left\{\mathrm{1},\mu,\mu^{\mathrm{2}} ,....\mu^{\left(\frac{{nu}−{mv}}{{gcd}\left({n},{v}\right)}−\mathrm{1}\right)} \right\}\:\:,\:{the}\:{solution}\:{for}\:{pair} \\ $$$$\left(\alpha,\beta\right)\:\:{is}\:{whole}\:\:{A}_{\alpha} ×{A}_{\beta} \\ $$

Answered by Rasheed Soomro last updated on 19/Aug/15

α and β may be any complex numbers for                         mv=nu

$$\alpha\:{and}\:\beta\:{may}\:{be}\:{any}\:{complex}\:{numbers}\:{for} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{mv}={nu} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com