Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 15591 by Tinkutara last updated on 12/Jun/17

A projectile projected from the ground  has its direction of motion making an  angle (π/4) with the horizontal at a height  40 m. Its initial velocity of projection is  50 m/s, the angle of projection is?

$$\mathrm{A}\:\mathrm{projectile}\:\mathrm{projected}\:\mathrm{from}\:\mathrm{the}\:\mathrm{ground} \\ $$$$\mathrm{has}\:\mathrm{its}\:\mathrm{direction}\:\mathrm{of}\:\mathrm{motion}\:\mathrm{making}\:\mathrm{an} \\ $$$$\mathrm{angle}\:\frac{\pi}{\mathrm{4}}\:\mathrm{with}\:\mathrm{the}\:\mathrm{horizontal}\:\mathrm{at}\:\mathrm{a}\:\mathrm{height} \\ $$$$\mathrm{40}\:\mathrm{m}.\:\mathrm{Its}\:\mathrm{initial}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{projection}\:\mathrm{is} \\ $$$$\mathrm{50}\:\mathrm{m}/\mathrm{s},\:\mathrm{the}\:\mathrm{angle}\:\mathrm{of}\:\mathrm{projection}\:\mathrm{is}? \\ $$

Answered by mrW1 last updated on 12/Jun/17

u=50m/s  u_x =50cos α  u_y =50sin α  y=u_y t−(1/2)gt^2   x=u_x t  tan θ=(dy/dx)=(dy/dt)×(1/(dx/dt))=((u_y −gt)/u_x )  at y=40m: ϑ=(π/4)  tan (π/4)=((u_y −gt)/u_x )=1  t=((u_y −u_x )/g)  y=u_y ((u_y −u_x )/g)−(g/2)(((u_y −u_x )/g))^2 =40  ((u_y −u_x )/g)[u_y −((u_y −u_x )/2)]=40  ((u_y −u_x )/g)[((u_y +u_x )/2)]=40  u_y ^2 −u_x ^2 =2×40g  u^2 (sin^2  α−cos^2  α)=80g  −u^2 cos 2α=80g  cos 2α=−((80g)/u^2 )=−((800)/(50^2 ))=−0.32  ⇒2α=108.7°  ⇒α=54.3°

$$\mathrm{u}=\mathrm{50m}/\mathrm{s} \\ $$$$\mathrm{u}_{\mathrm{x}} =\mathrm{50cos}\:\alpha \\ $$$$\mathrm{u}_{\mathrm{y}} =\mathrm{50sin}\:\alpha \\ $$$$\mathrm{y}=\mathrm{u}_{\mathrm{y}} \mathrm{t}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{gt}^{\mathrm{2}} \\ $$$$\mathrm{x}=\mathrm{u}_{\mathrm{x}} \mathrm{t} \\ $$$$\mathrm{tan}\:\theta=\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{dt}}×\frac{\mathrm{1}}{\frac{\mathrm{dx}}{\mathrm{dt}}}=\frac{\mathrm{u}_{\mathrm{y}} −\mathrm{gt}}{\mathrm{u}_{\mathrm{x}} } \\ $$$$\mathrm{at}\:\mathrm{y}=\mathrm{40m}:\:\vartheta=\frac{\pi}{\mathrm{4}} \\ $$$$\mathrm{tan}\:\frac{\pi}{\mathrm{4}}=\frac{\mathrm{u}_{\mathrm{y}} −\mathrm{gt}}{\mathrm{u}_{\mathrm{x}} }=\mathrm{1} \\ $$$$\mathrm{t}=\frac{\mathrm{u}_{\mathrm{y}} −\mathrm{u}_{\mathrm{x}} }{\mathrm{g}} \\ $$$$\mathrm{y}=\mathrm{u}_{\mathrm{y}} \frac{\mathrm{u}_{\mathrm{y}} −\mathrm{u}_{\mathrm{x}} }{\mathrm{g}}−\frac{\mathrm{g}}{\mathrm{2}}\left(\frac{\mathrm{u}_{\mathrm{y}} −\mathrm{u}_{\mathrm{x}} }{\mathrm{g}}\right)^{\mathrm{2}} =\mathrm{40} \\ $$$$\frac{\mathrm{u}_{\mathrm{y}} −\mathrm{u}_{\mathrm{x}} }{\mathrm{g}}\left[\mathrm{u}_{\mathrm{y}} −\frac{\mathrm{u}_{\mathrm{y}} −\mathrm{u}_{\mathrm{x}} }{\mathrm{2}}\right]=\mathrm{40} \\ $$$$\frac{\mathrm{u}_{\mathrm{y}} −\mathrm{u}_{\mathrm{x}} }{\mathrm{g}}\left[\frac{\mathrm{u}_{\mathrm{y}} +\mathrm{u}_{\mathrm{x}} }{\mathrm{2}}\right]=\mathrm{40} \\ $$$$\mathrm{u}_{\mathrm{y}} ^{\mathrm{2}} −\mathrm{u}_{\mathrm{x}} ^{\mathrm{2}} =\mathrm{2}×\mathrm{40g} \\ $$$$\mathrm{u}^{\mathrm{2}} \left(\mathrm{sin}^{\mathrm{2}} \:\alpha−\mathrm{cos}^{\mathrm{2}} \:\alpha\right)=\mathrm{80g} \\ $$$$−\mathrm{u}^{\mathrm{2}} \mathrm{cos}\:\mathrm{2}\alpha=\mathrm{80g} \\ $$$$\mathrm{cos}\:\mathrm{2}\alpha=−\frac{\mathrm{80g}}{\mathrm{u}^{\mathrm{2}} }=−\frac{\mathrm{800}}{\mathrm{50}^{\mathrm{2}} }=−\mathrm{0}.\mathrm{32} \\ $$$$\Rightarrow\mathrm{2}\alpha=\mathrm{108}.\mathrm{7}° \\ $$$$\Rightarrow\alpha=\mathrm{54}.\mathrm{3}° \\ $$

Commented by Tinkutara last updated on 12/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com