Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 156008 by zainaltanjung last updated on 07/Oct/21

Tekhnic  Integration by part  1) Find ∫x.sec^2 x dx  2) Find ∫x.e^(2x)  dx  3) Find ∫ln  x dx  4)  Find ∫x^2 .e^(2x)  dx  5)  Find ∫e^x  cos x dx

$$\mathrm{Tekhnic}\:\:\mathrm{Integration}\:\mathrm{by}\:\mathrm{part} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Find}\:\int\mathrm{x}.\mathrm{sec}\:^{\mathrm{2}} \mathrm{x}\:\mathrm{dx} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{Find}\:\int\mathrm{x}.\mathrm{e}^{\mathrm{2x}} \:\mathrm{dx} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{Find}\:\int\mathrm{ln}\:\:\mathrm{x}\:\mathrm{dx} \\ $$$$\left.\mathrm{4}\right)\:\:\mathrm{Find}\:\int\mathrm{x}^{\mathrm{2}} .\mathrm{e}^{\mathrm{2x}} \:\mathrm{dx} \\ $$$$\left.\mathrm{5}\right)\:\:\mathrm{Find}\:\int\mathrm{e}^{\mathrm{x}} \:\mathrm{cos}\:\mathrm{x}\:\mathrm{dx} \\ $$$$\: \\ $$$$ \\ $$

Commented by SANOGO last updated on 07/Oct/21

cool

$${cool} \\ $$

Commented by puissant last updated on 07/Oct/21

1)  A=∫x sec^2 x dx = xtanx−∫tanx  =xtanx−(−ln∣cosx∣)+C  ⇒ A= xtanx+ln∣cosx∣+C..

$$\left.\mathrm{1}\right) \\ $$$${A}=\int{x}\:{sec}^{\mathrm{2}} {x}\:{dx}\:=\:{xtanx}−\int{tanx} \\ $$$$={xtanx}−\left(−{ln}\mid{cosx}\mid\right)+{C} \\ $$$$\Rightarrow\:{A}=\:{xtanx}+{ln}\mid{cosx}\mid+{C}.. \\ $$

Commented by puissant last updated on 07/Oct/21

2)  S=∫x e^(2x) dx = (1/2)x e^(2x) −(1/2)∫e^(2x) dx  =(1/2)x e^(2x) −(1/4)e^(2x) +C  ⇒ S= (1/2){x e^(2x) −(1/2)e^(2x) }+C

$$\left.\mathrm{2}\right) \\ $$$${S}=\int{x}\:{e}^{\mathrm{2}{x}} {dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}{x}\:{e}^{\mathrm{2}{x}} −\frac{\mathrm{1}}{\mathrm{2}}\int{e}^{\mathrm{2}{x}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{x}\:{e}^{\mathrm{2}{x}} −\frac{\mathrm{1}}{\mathrm{4}}{e}^{\mathrm{2}{x}} +{C} \\ $$$$\Rightarrow\:{S}=\:\frac{\mathrm{1}}{\mathrm{2}}\left\{{x}\:{e}^{\mathrm{2}{x}} −\frac{\mathrm{1}}{\mathrm{2}}{e}^{\mathrm{2}{x}} \right\}+{C} \\ $$

Commented by SANOGO last updated on 07/Oct/21

3)  ∫lnx=xlnx−x +c

$$\left.\mathrm{3}\right)\:\:\int{lnx}={xlnx}−{x}\:+{c} \\ $$

Commented by puissant last updated on 07/Oct/21

3)  I=∫lnx dx    { ((u=lnx)),((v′=1)) :}  ⇒  { ((u′=(1/x))),((v=x)) :}  ⇒ I = xlnx−∫1dx  ⇒ I = xlnx − x + C

$$\left.\mathrm{3}\right) \\ $$$${I}=\int{lnx}\:{dx}\: \\ $$$$\begin{cases}{{u}={lnx}}\\{{v}'=\mathrm{1}}\end{cases}\:\:\Rightarrow\:\begin{cases}{{u}'=\frac{\mathrm{1}}{{x}}}\\{{v}={x}}\end{cases} \\ $$$$\Rightarrow\:{I}\:=\:{xlnx}−\int\mathrm{1}{dx} \\ $$$$\Rightarrow\:{I}\:=\:{xlnx}\:−\:{x}\:+\:{C} \\ $$

Commented by puissant last updated on 07/Oct/21

4)  J=∫x^2 e^(2x) dx    { ((u=x^2 )),((v′=e^(2x) )) :}   ⇒   { ((u′=2x)),((v=(1/2)e^(2x) )) :}  ⇒ J = (x^2 /2)e^(2x) −∫xe^(2x) dx  ⇒ J=(x^2 /2)e^(2x) −(x/2)e^(2x) +(1/4)e^(2x) +C

$$\left.\mathrm{4}\right) \\ $$$${J}=\int{x}^{\mathrm{2}} {e}^{\mathrm{2}{x}} {dx}\: \\ $$$$\begin{cases}{{u}={x}^{\mathrm{2}} }\\{{v}'={e}^{\mathrm{2}{x}} }\end{cases}\:\:\:\Rightarrow\:\:\begin{cases}{{u}'=\mathrm{2}{x}}\\{{v}=\frac{\mathrm{1}}{\mathrm{2}}{e}^{\mathrm{2}{x}} }\end{cases} \\ $$$$\Rightarrow\:{J}\:=\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{e}^{\mathrm{2}{x}} −\int{xe}^{\mathrm{2}{x}} {dx} \\ $$$$\Rightarrow\:{J}=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}{e}^{\mathrm{2}{x}} −\frac{{x}}{\mathrm{2}}{e}^{\mathrm{2}{x}} +\frac{\mathrm{1}}{\mathrm{4}}{e}^{\mathrm{2}{x}} +{C} \\ $$

Commented by puissant last updated on 07/Oct/21

5)  D = ∫e^x cosx dx   { ((u=cosx)),((v′=e^x )) :}  ⇒  { ((u′=−sinx)),((v=e^x )) :}  ⇒ D = e^x cosx+∫e^x sinx dx   { ((u=sinx)),((v′=e^x )) :}  ⇒   { ((u′=cosx)),((v=e^x )) :}  ⇒ D = e^x cosx+e^x sinx−∫e^x cosxdx  ⇒ D = e^x (cosx+sinx)−D  ⇒ 2D=e^x (cosx+sinx)  ⇒ D=(e^x /2)(cosx+sinx)+C..

$$\left.\mathrm{5}\right) \\ $$$${D}\:=\:\int{e}^{{x}} {cosx}\:{dx} \\ $$$$\begin{cases}{{u}={cosx}}\\{{v}'={e}^{{x}} }\end{cases}\:\:\Rightarrow\:\begin{cases}{{u}'=−{sinx}}\\{{v}={e}^{{x}} }\end{cases} \\ $$$$\Rightarrow\:{D}\:=\:{e}^{{x}} {cosx}+\int{e}^{{x}} {sinx}\:{dx} \\ $$$$\begin{cases}{{u}={sinx}}\\{{v}'={e}^{{x}} }\end{cases}\:\:\Rightarrow\:\:\begin{cases}{{u}'={cosx}}\\{{v}={e}^{{x}} }\end{cases} \\ $$$$\Rightarrow\:{D}\:=\:{e}^{{x}} {cosx}+{e}^{{x}} {sinx}−\int{e}^{{x}} {cosxdx} \\ $$$$\Rightarrow\:{D}\:=\:{e}^{{x}} \left({cosx}+{sinx}\right)−{D} \\ $$$$\Rightarrow\:\mathrm{2}{D}={e}^{{x}} \left({cosx}+{sinx}\right) \\ $$$$\Rightarrow\:{D}=\frac{{e}^{{x}} }{\mathrm{2}}\left({cosx}+{sinx}\right)+{C}.. \\ $$

Commented by tabata last updated on 08/Oct/21

3 ) with out by part     ∫ lnx dx = ∫ ( lnx + 1 − 1 )dx     = ∫ (( lnx + 1 ) − 1) dx     = ∫ d ( x lnx ) − ∫ dx    = x lnx − x + C    □ M

$$\left.\mathrm{3}\:\right)\:\boldsymbol{{with}}\:\boldsymbol{{out}}\:\boldsymbol{{by}}\:\boldsymbol{{part}}\: \\ $$$$ \\ $$$$\int\:\boldsymbol{{lnx}}\:\boldsymbol{{dx}}\:=\:\int\:\left(\:\boldsymbol{{lnx}}\:+\:\mathrm{1}\:−\:\mathrm{1}\:\right)\boldsymbol{{dx}}\: \\ $$$$ \\ $$$$=\:\int\:\left(\left(\:\boldsymbol{{lnx}}\:+\:\mathrm{1}\:\right)\:−\:\mathrm{1}\right)\:\boldsymbol{{dx}} \\ $$$$ \\ $$$$\:=\:\int\:\boldsymbol{{d}}\:\left(\:\boldsymbol{{x}}\:\boldsymbol{{lnx}}\:\right)\:−\:\int\:\boldsymbol{{dx}} \\ $$$$ \\ $$$$=\:\boldsymbol{{x}}\:\boldsymbol{{lnx}}\:−\:\boldsymbol{{x}}\:+\:\boldsymbol{{C}} \\ $$$$ \\ $$$$\square\:\boldsymbol{{M}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com