Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 156177 by amin96 last updated on 08/Oct/21

∫_(−∞) ^∞ ((sin (x))/(x^2 +x+1))dx=?

$$\int_{−\infty} ^{\infty} \frac{\mathrm{sin}\:\left({x}\right)}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx}=? \\ $$

Answered by mathmax by abdo last updated on 10/Oct/21

Ψ=∫_(−∞) ^(+∞)  ((sinx)/(x^2 +x+1))dx =Im(∫_(−∞) ^(+∞)  (e^(ix) /(x^2  +x+1))dx) let  ϕ(z)=(e^(iz) /(z^2  +z+1))  poles of ϕ?  z^2  +z +1=0 →Δ=1−4=−3 ⇒the roots are z_1 =((−1+i(√3))/2)=e^((2iπ)/3)   z_2 =((−1−i(√3))/2) =e^(−2((iπ)/3))  ⇒ϕ(z)=(e^(iz) /((z−e^((2iπ)/3) )(z−e^(−((2iπ)/3)) )))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,e^((2iπ)/3) ) =2iπ.(e^(i e^((2iπ)/3) ) /(e^((2iπ)/3) −e^(−((2iπ)/3)) ))  =((2iπ)/(2i sin(((2π)/3))))×e^(i(−(1/2)+i((√3)/2)))  =(π/((√3)/2))×e^(−((√3)/2))  e^(−(i/2))   =((2π)/( (√3))) e^(−((√3)/2))  {cos((1/2))−i sin((1/2))} ⇒  Ψ=Im(∫_R ϕ(z)dz) =−((2π)/( (√3)))sin((1/2))e^(−((√3)/2))

$$\Psi=\int_{−\infty} ^{+\infty} \:\frac{\mathrm{sinx}}{\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\mathrm{dx}\:=\mathrm{Im}\left(\int_{−\infty} ^{+\infty} \:\frac{\mathrm{e}^{\mathrm{ix}} }{\mathrm{x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}}\mathrm{dx}\right)\:\mathrm{let} \\ $$$$\varphi\left(\mathrm{z}\right)=\frac{\mathrm{e}^{\mathrm{iz}} }{\mathrm{z}^{\mathrm{2}} \:+\mathrm{z}+\mathrm{1}}\:\:\mathrm{poles}\:\mathrm{of}\:\varphi? \\ $$$$\mathrm{z}^{\mathrm{2}} \:+\mathrm{z}\:+\mathrm{1}=\mathrm{0}\:\rightarrow\Delta=\mathrm{1}−\mathrm{4}=−\mathrm{3}\:\Rightarrow\mathrm{the}\:\mathrm{roots}\:\mathrm{are}\:\mathrm{z}_{\mathrm{1}} =\frac{−\mathrm{1}+\mathrm{i}\sqrt{\mathrm{3}}}{\mathrm{2}}=\mathrm{e}^{\frac{\mathrm{2i}\pi}{\mathrm{3}}} \\ $$$$\mathrm{z}_{\mathrm{2}} =\frac{−\mathrm{1}−\mathrm{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:=\mathrm{e}^{−\mathrm{2}\frac{\mathrm{i}\pi}{\mathrm{3}}} \:\Rightarrow\varphi\left(\mathrm{z}\right)=\frac{\mathrm{e}^{\mathrm{iz}} }{\left(\mathrm{z}−\mathrm{e}^{\frac{\mathrm{2i}\pi}{\mathrm{3}}} \right)\left(\mathrm{z}−\mathrm{e}^{−\frac{\mathrm{2i}\pi}{\mathrm{3}}} \right)} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left(\mathrm{z}\right)\mathrm{dz}\:=\mathrm{2i}\pi\:\mathrm{Res}\left(\varphi,\mathrm{e}^{\frac{\mathrm{2i}\pi}{\mathrm{3}}} \right)\:=\mathrm{2i}\pi.\frac{\mathrm{e}^{\mathrm{i}\:\mathrm{e}^{\frac{\mathrm{2i}\pi}{\mathrm{3}}} } }{\mathrm{e}^{\frac{\mathrm{2i}\pi}{\mathrm{3}}} −\mathrm{e}^{−\frac{\mathrm{2i}\pi}{\mathrm{3}}} } \\ $$$$=\frac{\mathrm{2i}\pi}{\mathrm{2i}\:\mathrm{sin}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)}×\mathrm{e}^{\mathrm{i}\left(−\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)} \:=\frac{\pi}{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}×\mathrm{e}^{−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} \:\mathrm{e}^{−\frac{\mathrm{i}}{\mathrm{2}}} \\ $$$$=\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}}\:\mathrm{e}^{−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} \:\left\{\mathrm{cos}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{i}\:\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\right\}\:\Rightarrow \\ $$$$\Psi=\mathrm{Im}\left(\int_{\mathrm{R}} \varphi\left(\mathrm{z}\right)\mathrm{dz}\right)\:=−\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}}\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{e}^{−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com