Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 156316 by cortano last updated on 10/Oct/21

Commented by cortano last updated on 10/Oct/21

AD=DE=EB , AF : FG : GC=1:2:1   what fraction of ΔABC is shaded?

$$\mathrm{AD}=\mathrm{DE}=\mathrm{EB}\:,\:\mathrm{AF}\::\:\mathrm{FG}\::\:\mathrm{GC}=\mathrm{1}:\mathrm{2}:\mathrm{1} \\ $$$$\:\mathrm{what}\:\mathrm{fraction}\:\mathrm{of}\:\Delta\mathrm{ABC}\:\mathrm{is}\:\mathrm{shaded}? \\ $$

Answered by mr W last updated on 10/Oct/21

Commented by mr W last updated on 10/Oct/21

say area of ΔABC is A.  ((CG)/(AC))=(1/4)   ⇒(A_1 /A)=(1/4)  ((ΔBGA)/A)=(3/4)  ((BE)/(BA))=(1/3)   ⇒(A_2 /(ΔBGA))=(1/3)   ⇒(A_2 /A)=(1/3)×(3/4)=(1/4)  ((ΔGEA)/(ΔBGA))=(2/3)   ⇒((ΔGEA)/A)=(2/3)×(3/4)=(1/2)  ((ED)/(EA))=(1/2)   ⇒((ΔGED)/(ΔGEA))=(1/2)   ⇒((ΔGED)/A)=(1/2)×(1/2)=(1/4)  ((KF)/(AF))=((DE)/(AE))=(1/2), ((AF)/(FG))=(1/2)   ⇒((KF)/(FG))=(1/2)×(1/2)=(1/4)  ((DH)/(HG))=((KF)/(FG))=(1/4)   ⇒((HG)/(DG))=(4/(1+4))=(4/5)   ⇒(A_3 /(ΔGED))=(4/5)   ⇒(A_3 /A)=(4/5)×(1/4)=(1/5)    ((shaded)/(ΔABC))=((A_1 +A_2 +A_3 )/A)=(1/4)+(1/4)+(1/5)=(7/(10))

$${say}\:{area}\:{of}\:\Delta{ABC}\:{is}\:{A}. \\ $$$$\frac{{CG}}{{AC}}=\frac{\mathrm{1}}{\mathrm{4}}\: \\ $$$$\Rightarrow\frac{{A}_{\mathrm{1}} }{{A}}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\frac{\Delta{BGA}}{{A}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\frac{{BE}}{{BA}}=\frac{\mathrm{1}}{\mathrm{3}}\: \\ $$$$\Rightarrow\frac{{A}_{\mathrm{2}} }{\Delta{BGA}}=\frac{\mathrm{1}}{\mathrm{3}}\: \\ $$$$\Rightarrow\frac{{A}_{\mathrm{2}} }{{A}}=\frac{\mathrm{1}}{\mathrm{3}}×\frac{\mathrm{3}}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\frac{\Delta{GEA}}{\Delta{BGA}}=\frac{\mathrm{2}}{\mathrm{3}}\: \\ $$$$\Rightarrow\frac{\Delta{GEA}}{{A}}=\frac{\mathrm{2}}{\mathrm{3}}×\frac{\mathrm{3}}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{{ED}}{{EA}}=\frac{\mathrm{1}}{\mathrm{2}}\: \\ $$$$\Rightarrow\frac{\Delta{GED}}{\Delta{GEA}}=\frac{\mathrm{1}}{\mathrm{2}}\: \\ $$$$\Rightarrow\frac{\Delta{GED}}{{A}}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\frac{{KF}}{{AF}}=\frac{{DE}}{{AE}}=\frac{\mathrm{1}}{\mathrm{2}},\:\frac{{AF}}{{FG}}=\frac{\mathrm{1}}{\mathrm{2}}\: \\ $$$$\Rightarrow\frac{{KF}}{{FG}}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\frac{{DH}}{{HG}}=\frac{{KF}}{{FG}}=\frac{\mathrm{1}}{\mathrm{4}}\: \\ $$$$\Rightarrow\frac{{HG}}{{DG}}=\frac{\mathrm{4}}{\mathrm{1}+\mathrm{4}}=\frac{\mathrm{4}}{\mathrm{5}}\: \\ $$$$\Rightarrow\frac{{A}_{\mathrm{3}} }{\Delta{GED}}=\frac{\mathrm{4}}{\mathrm{5}}\: \\ $$$$\Rightarrow\frac{{A}_{\mathrm{3}} }{{A}}=\frac{\mathrm{4}}{\mathrm{5}}×\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$$ \\ $$$$\frac{{shaded}}{\Delta{ABC}}=\frac{{A}_{\mathrm{1}} +{A}_{\mathrm{2}} +{A}_{\mathrm{3}} }{{A}}=\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}=\frac{\mathrm{7}}{\mathrm{10}} \\ $$

Commented by Tawa11 last updated on 10/Oct/21

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Commented by otchereabdullai@gmail.com last updated on 10/Oct/21

Brilliant !

$$\mathrm{Brilliant}\:! \\ $$

Answered by ajfour last updated on 10/Oct/21

AB=3b     AC=4c  s=△_(ABC) =6(b×c)  △_(AEF) =(b×c)  △_(ADG) =(3/2)(b×c)  p=△_(AEF) +△_(ADG) =(5/2)(b×c)  for H_(−)     eq. of DG:  h= b+λ(2c−b)   eq. of  FE:   h= c+μ(3b−c)  comparing coefficients of a,b  1−λ=3μ  &   1−μ=2λ  ⇒  1−μ=2(1−3μ)  ⇒  μ=(1/5)  ,  λ=(2/5)  h=b+(2/5)(2c−b)=((3b+4c)/5)  △_(DAH) =(1/2)b×(((3b+4c)/5))  △_(HAF) =(1/2)(((3b+4c)/5))×c  adding  =(1/2)(b−c)(((3b+4c)/5))   q=(△_(DAH) +△_(HAF) )  =((7(b×c))/(10))  shaded area   =△_(ABC) −{△_(AEF) +△_(AEG) −(△_(DAH) +△_(HAF) )}  shaded area=s−(p−q)  ((shaded area)/△_(ABC) )=((s−p+q)/s)  ((shaded area)/△_(ABC) )=((6−(5/2)+(7/(10)))/6)      ((shaded area)/△_(ABC) )      =((42)/(60))=(7/(10))  ✓

$$\mathrm{AB}=\mathrm{3b}\:\:\:\:\:\mathrm{AC}=\mathrm{4c} \\ $$$$\mathrm{s}=\bigtriangleup_{\mathrm{ABC}} =\mathrm{6}\left(\mathrm{b}×\mathrm{c}\right) \\ $$$$\bigtriangleup_{\mathrm{AEF}} =\left(\mathrm{b}×\mathrm{c}\right) \\ $$$$\bigtriangleup_{\mathrm{ADG}} =\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{b}×\mathrm{c}\right) \\ $$$$\mathrm{p}=\bigtriangleup_{\mathrm{AEF}} +\bigtriangleup_{\mathrm{ADG}} =\frac{\mathrm{5}}{\mathrm{2}}\left(\mathrm{b}×\mathrm{c}\right) \\ $$$$\underset{−} {\mathrm{for}\:\mathrm{H}}\: \\ $$$$\:\mathrm{eq}.\:\mathrm{of}\:\mathrm{DG}:\:\:\mathrm{h}=\:\mathrm{b}+\lambda\left(\mathrm{2c}−\mathrm{b}\right) \\ $$$$\:\mathrm{eq}.\:\mathrm{of}\:\:\mathrm{FE}:\:\:\:\mathrm{h}=\:\mathrm{c}+\mu\left(\mathrm{3b}−\mathrm{c}\right) \\ $$$$\mathrm{comparing}\:\mathrm{coefficients}\:\mathrm{of}\:\mathrm{a},\mathrm{b} \\ $$$$\mathrm{1}−\lambda=\mathrm{3}\mu\:\:\&\:\:\:\mathrm{1}−\mu=\mathrm{2}\lambda \\ $$$$\Rightarrow\:\:\mathrm{1}−\mu=\mathrm{2}\left(\mathrm{1}−\mathrm{3}\mu\right) \\ $$$$\Rightarrow\:\:\mu=\frac{\mathrm{1}}{\mathrm{5}}\:\:,\:\:\lambda=\frac{\mathrm{2}}{\mathrm{5}} \\ $$$$\mathrm{h}=\mathrm{b}+\frac{\mathrm{2}}{\mathrm{5}}\left(\mathrm{2c}−\mathrm{b}\right)=\frac{\mathrm{3b}+\mathrm{4c}}{\mathrm{5}} \\ $$$$\bigtriangleup_{\mathrm{DAH}} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{b}×\left(\frac{\mathrm{3b}+\mathrm{4c}}{\mathrm{5}}\right) \\ $$$$\bigtriangleup_{\mathrm{HAF}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{3b}+\mathrm{4c}}{\mathrm{5}}\right)×\mathrm{c} \\ $$$$\mathrm{adding}\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{b}−\mathrm{c}\right)\left(\frac{\mathrm{3b}+\mathrm{4c}}{\mathrm{5}}\right) \\ $$$$\:\mathrm{q}=\left(\bigtriangleup_{\mathrm{DAH}} +\bigtriangleup_{\mathrm{HAF}} \right)\:\:=\frac{\mathrm{7}\left(\mathrm{b}×\mathrm{c}\right)}{\mathrm{10}} \\ $$$$\mathrm{shaded}\:\mathrm{area} \\ $$$$\:=\bigtriangleup_{\mathrm{ABC}} −\left\{\bigtriangleup_{\mathrm{AEF}} +\bigtriangleup_{\mathrm{AEG}} −\left(\bigtriangleup_{\mathrm{DAH}} +\bigtriangleup_{\mathrm{HAF}} \right)\right\} \\ $$$$\mathrm{shaded}\:\mathrm{area}=\mathrm{s}−\left(\mathrm{p}−\mathrm{q}\right) \\ $$$$\frac{\mathrm{shaded}\:\mathrm{area}}{\bigtriangleup_{\mathrm{ABC}} }=\frac{\mathrm{s}−\mathrm{p}+\mathrm{q}}{\mathrm{s}} \\ $$$$\frac{\mathrm{shaded}\:\mathrm{area}}{\bigtriangleup_{\mathrm{ABC}} }=\frac{\mathrm{6}−\frac{\mathrm{5}}{\mathrm{2}}+\frac{\mathrm{7}}{\mathrm{10}}}{\mathrm{6}} \\ $$$$\:\:\:\:\frac{\mathrm{shaded}\:\mathrm{area}}{\bigtriangleup_{\mathrm{ABC}} }\:\:\:\:\:\:=\frac{\mathrm{42}}{\mathrm{60}}=\frac{\mathrm{7}}{\mathrm{10}}\:\:\checkmark \\ $$$$ \\ $$

Commented by mr W last updated on 10/Oct/21

great!

$${great}! \\ $$

Answered by john_santu last updated on 11/Oct/21

by length ratio of triangles  (1) ((area ΔAEG)/(area ΔABC)) = (((2/3)×(3/4))/1)=((1/2)/1)  (2) ((area shaded)/(area ΔABC))=(((1/2)(((1+2)/(1+2+2))))/1)=(3/(10))  (3) fraction of area =1−(3/(10))=(7/(10))

$${by}\:{length}\:{ratio}\:{of}\:{triangles} \\ $$$$\left(\mathrm{1}\right)\:\frac{{area}\:\Delta{AEG}}{{area}\:\Delta{ABC}}\:=\:\frac{\frac{\mathrm{2}}{\mathrm{3}}×\frac{\mathrm{3}}{\mathrm{4}}}{\mathrm{1}}=\frac{\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{1}} \\ $$$$\left(\mathrm{2}\right)\:\frac{{area}\:{shaded}}{{area}\:\Delta{ABC}}=\frac{\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}+\mathrm{2}}{\mathrm{1}+\mathrm{2}+\mathrm{2}}\right)}{\mathrm{1}}=\frac{\mathrm{3}}{\mathrm{10}} \\ $$$$\left(\mathrm{3}\right)\:{fraction}\:{of}\:{area}\:=\mathrm{1}−\frac{\mathrm{3}}{\mathrm{10}}=\frac{\mathrm{7}}{\mathrm{10}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com