Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 156404 by ajfour last updated on 10/Oct/21

  x^4 +bx^2 +cx+d=0  let  cx=m+px^2 +x^4   ⇒  2x^4 +(b+p)x^2 +m+d=0  x^2 =−(((b+p)/4))±(√((((b+p)/4))^2 −(((m+d)/2))))  (p−b)x^2 −2cx+m−d=0  x=(c/(p−b))±(√(((c/(p−b)))^2 −(((m−d)/(p−b)))))  ⇒  (((b^2 −p^2 ))/4)±(√(((b^2 −p^2 )^2 −8(p−b)^2 (m+d))/(16)))  +((2c^2 )/(b−p))∓(√((4c^4 −4c^2 (p−b)(m−d))/((p−b)^2 )))      +m−d=0  Just if  m=d  ⇒  (((b^2 −p^2 ))/4)±(√(((b^2 −p^2 )^2 −16d(p−b))/(16)))  +((4c^2 )/(b−p))=0  ⇒  (((b^2 −p^2 )/4)+((4c^2 )/(b−p)))^2 +d(p−b)=(((b^2 −p^2 )^2 )/(16))  ⇒ ((16c^4 )/((b−p)^2 ))+(d+2c^2 )(b+p)=0  let  b−p=z  z^2 (2b−z)=−((16c^4 )/(2c^2 +d))  z^3 −2bz^2 −k=0    (k>0)  if b=−1 , d=0, c→−c  z^3 +2z^2 −8c^2 =0  let  z=((2c)/t)  8c^3 +8c^2 t−8c^2 t^3 =0  ⇒  t^3 −t=c  back to square one.

$$\:\:\mathrm{x}^{\mathrm{4}} +\mathrm{bx}^{\mathrm{2}} +\mathrm{cx}+\mathrm{d}=\mathrm{0} \\ $$$$\mathrm{let}\:\:\mathrm{cx}=\mathrm{m}+\mathrm{px}^{\mathrm{2}} +\mathrm{x}^{\mathrm{4}} \\ $$$$\Rightarrow\:\:\mathrm{2x}^{\mathrm{4}} +\left(\mathrm{b}+\mathrm{p}\right)\mathrm{x}^{\mathrm{2}} +\mathrm{m}+\mathrm{d}=\mathrm{0} \\ $$$$\mathrm{x}^{\mathrm{2}} =−\left(\frac{\mathrm{b}+\mathrm{p}}{\mathrm{4}}\right)\pm\sqrt{\left(\frac{\mathrm{b}+\mathrm{p}}{\mathrm{4}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{m}+\mathrm{d}}{\mathrm{2}}\right)} \\ $$$$\left(\mathrm{p}−\mathrm{b}\right)\mathrm{x}^{\mathrm{2}} −\mathrm{2cx}+\mathrm{m}−\mathrm{d}=\mathrm{0} \\ $$$$\mathrm{x}=\frac{\mathrm{c}}{\mathrm{p}−\mathrm{b}}\pm\sqrt{\left(\frac{\mathrm{c}}{\mathrm{p}−\mathrm{b}}\right)^{\mathrm{2}} −\left(\frac{\mathrm{m}−\mathrm{d}}{\mathrm{p}−\mathrm{b}}\right)} \\ $$$$\Rightarrow \\ $$$$\frac{\left(\mathrm{b}^{\mathrm{2}} −\mathrm{p}^{\mathrm{2}} \right)}{\mathrm{4}}\pm\sqrt{\frac{\left(\mathrm{b}^{\mathrm{2}} −\mathrm{p}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{8}\left(\mathrm{p}−\mathrm{b}\right)^{\mathrm{2}} \left(\mathrm{m}+\mathrm{d}\right)}{\mathrm{16}}} \\ $$$$+\frac{\mathrm{2c}^{\mathrm{2}} }{\mathrm{b}−\mathrm{p}}\mp\sqrt{\frac{\mathrm{4c}^{\mathrm{4}} −\mathrm{4c}^{\mathrm{2}} \left(\mathrm{p}−\mathrm{b}\right)\left(\mathrm{m}−\mathrm{d}\right)}{\left(\mathrm{p}−\mathrm{b}\right)^{\mathrm{2}} }} \\ $$$$\:\:\:\:+\mathrm{m}−\mathrm{d}=\mathrm{0} \\ $$$${Just}\:{if}\:\:{m}={d}\:\:\Rightarrow \\ $$$$\frac{\left(\mathrm{b}^{\mathrm{2}} −\mathrm{p}^{\mathrm{2}} \right)}{\mathrm{4}}\pm\sqrt{\frac{\left(\mathrm{b}^{\mathrm{2}} −\mathrm{p}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{16d}\left(\mathrm{p}−\mathrm{b}\right)}{\mathrm{16}}} \\ $$$$+\frac{\mathrm{4c}^{\mathrm{2}} }{\mathrm{b}−\mathrm{p}}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\left(\frac{\mathrm{b}^{\mathrm{2}} −\mathrm{p}^{\mathrm{2}} }{\mathrm{4}}+\frac{\mathrm{4c}^{\mathrm{2}} }{\mathrm{b}−\mathrm{p}}\right)^{\mathrm{2}} +\mathrm{d}\left(\mathrm{p}−\mathrm{b}\right)=\frac{\left(\mathrm{b}^{\mathrm{2}} −\mathrm{p}^{\mathrm{2}} \right)^{\mathrm{2}} }{\mathrm{16}} \\ $$$$\Rightarrow\:\frac{\mathrm{16c}^{\mathrm{4}} }{\left(\mathrm{b}−\mathrm{p}\right)^{\mathrm{2}} }+\left(\mathrm{d}+\mathrm{2c}^{\mathrm{2}} \right)\left(\mathrm{b}+\mathrm{p}\right)=\mathrm{0} \\ $$$$\mathrm{let}\:\:\mathrm{b}−\mathrm{p}=\mathrm{z} \\ $$$$\mathrm{z}^{\mathrm{2}} \left(\mathrm{2b}−\mathrm{z}\right)=−\frac{\mathrm{16c}^{\mathrm{4}} }{\mathrm{2c}^{\mathrm{2}} +\mathrm{d}} \\ $$$$\mathrm{z}^{\mathrm{3}} −\mathrm{2bz}^{\mathrm{2}} −\mathrm{k}=\mathrm{0}\:\:\:\:\left(\mathrm{k}>\mathrm{0}\right) \\ $$$$\mathrm{if}\:\mathrm{b}=−\mathrm{1}\:,\:\mathrm{d}=\mathrm{0},\:\mathrm{c}\rightarrow−\mathrm{c} \\ $$$$\mathrm{z}^{\mathrm{3}} +\mathrm{2z}^{\mathrm{2}} −\mathrm{8c}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{let}\:\:\mathrm{z}=\frac{\mathrm{2c}}{\mathrm{t}} \\ $$$$\mathrm{8c}^{\mathrm{3}} +\mathrm{8c}^{\mathrm{2}} \mathrm{t}−\mathrm{8c}^{\mathrm{2}} \mathrm{t}^{\mathrm{3}} =\mathrm{0} \\ $$$$\Rightarrow\:\:\mathrm{t}^{\mathrm{3}} −\mathrm{t}=\mathrm{c} \\ $$$$\mathrm{back}\:\mathrm{to}\:\mathrm{square}\:\mathrm{one}. \\ $$$$ \\ $$$$ \\ $$

Commented by Tawa11 last updated on 10/Oct/21

Sir, I thought you got one formula that work for power 4 already.  You want to get another one?

$$\mathrm{Sir},\:\mathrm{I}\:\mathrm{thought}\:\mathrm{you}\:\mathrm{got}\:\mathrm{one}\:\mathrm{formula}\:\mathrm{that}\:\mathrm{work}\:\mathrm{for}\:\mathrm{power}\:\mathrm{4}\:\mathrm{already}. \\ $$$$\mathrm{You}\:\mathrm{want}\:\mathrm{to}\:\mathrm{get}\:\mathrm{another}\:\mathrm{one}? \\ $$

Commented by ajfour last updated on 11/Oct/21

I havent yet derived a very  genersl one that doesnt need  to adopt imaginary numbers  and inverse trigonometry.

$$\mathrm{I}\:\mathrm{havent}\:\mathrm{yet}\:\mathrm{derived}\:\mathrm{a}\:\mathrm{very} \\ $$$$\mathrm{genersl}\:\mathrm{one}\:\mathrm{that}\:\mathrm{doesnt}\:\mathrm{need} \\ $$$$\mathrm{to}\:\mathrm{adopt}\:\mathrm{imaginary}\:\mathrm{numbers} \\ $$$$\mathrm{and}\:\mathrm{inverse}\:\mathrm{trigonometry}. \\ $$

Commented by Tawa11 last updated on 11/Oct/21

Ohh. Altight sir. God will help you more.

$$\mathrm{Ohh}.\:\mathrm{Altight}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{will}\:\mathrm{help}\:\mathrm{you}\:\mathrm{more}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com