Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 156413 by KONE last updated on 10/Oct/21

Answered by KONE last updated on 10/Oct/21

svp besoin d aide pour la question 2

$${svp}\:{besoin}\:{d}\:{aide}\:{pour}\:{la}\:{question}\:\mathrm{2} \\ $$

Answered by mindispower last updated on 11/Oct/21

(3−(1/(n+1)))≥(3−(1/n))(1+(1/((n+1)^3 )))...(1)  lemma(1)  ⇔(1/n)−(1/(n+1))≥(3/((n+1)^3 ))−(1/(n(n+1)^3 ))  (n+1)^3 −n(n+1)^2 ≥3n−1  (n+1)^2 n≥3n−1  true since   (n+1)^2 ≥4  n(n+1)^2 ≥4n=3n+n≥3n−1.....  (1) True  lets prouve This  n=1  we have 2≤3−1=2 true  suppose ∀n∈N^∗  Π_(k≤n) (1+(1/k^3 ))≤3−(1/n)  let prouv Π_(k≤n+1) (1+(1/k^3 ))≤3−(1/(n+1))  Π_(0≤k≤n+1) (1+(1/k^3 ))=Π_(0≤k≤n) (1+(1/k^3 )).(1+(1/((n+1)^3 )))≤  (3−(1/n))(1+(1/((n+1)^3 )))_(By Hypothesis) ≤3−(1/(n+1))   Using Lemma (1)  ⇒∀n∈N^∗ Π_(0≤k≤n) (1+(1/k^3 ))≤3−(1/n)

$$\left(\mathrm{3}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right)\geqslant\left(\mathrm{3}−\frac{\mathrm{1}}{{n}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} }\right)...\left(\mathrm{1}\right) \\ $$$${lemma}\left(\mathrm{1}\right) \\ $$$$\Leftrightarrow\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\geqslant\frac{\mathrm{3}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} }−\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\left({n}+\mathrm{1}\right)^{\mathrm{3}} −{n}\left({n}+\mathrm{1}\right)^{\mathrm{2}} \geqslant\mathrm{3}{n}−\mathrm{1} \\ $$$$\left({n}+\mathrm{1}\right)^{\mathrm{2}} {n}\geqslant\mathrm{3}{n}−\mathrm{1} \\ $$$${true}\:{since}\: \\ $$$$\left({n}+\mathrm{1}\right)^{\mathrm{2}} \geqslant\mathrm{4} \\ $$$${n}\left({n}+\mathrm{1}\right)^{\mathrm{2}} \geqslant\mathrm{4}{n}=\mathrm{3}{n}+{n}\geqslant\mathrm{3}{n}−\mathrm{1}..... \\ $$$$\left(\mathrm{1}\right)\:{True} \\ $$$${lets}\:{prouve}\:{This} \\ $$$${n}=\mathrm{1} \\ $$$${we}\:{have}\:\mathrm{2}\leqslant\mathrm{3}−\mathrm{1}=\mathrm{2}\:{true} \\ $$$${suppose}\:\forall{n}\in\mathbb{N}^{\ast} \:\underset{{k}\leqslant{n}} {\prod}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}^{\mathrm{3}} }\right)\leqslant\mathrm{3}−\frac{\mathrm{1}}{{n}} \\ $$$${let}\:{prouv}\:\underset{{k}\leqslant{n}+\mathrm{1}} {\prod}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}^{\mathrm{3}} }\right)\leqslant\mathrm{3}−\frac{\mathrm{1}}{{n}+\mathrm{1}} \\ $$$$\underset{\mathrm{0}\leqslant{k}\leqslant{n}+\mathrm{1}} {\prod}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}^{\mathrm{3}} }\right)=\underset{\mathrm{0}\leqslant{k}\leqslant{n}} {\prod}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}^{\mathrm{3}} }\right).\left(\mathrm{1}+\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} }\right)\leqslant \\ $$$$\left(\mathrm{3}−\frac{\mathrm{1}}{{n}}\right)\left(\mathrm{1}+\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{\mathrm{3}} }\right)_{{By}\:{Hypothesis}} \leqslant\mathrm{3}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\:\:\:{Using}\:{Lemma}\:\left(\mathrm{1}\right) \\ $$$$\Rightarrow\forall{n}\in\mathbb{N}^{\ast} \underset{\mathrm{0}\leqslant{k}\leqslant{n}} {\prod}\left(\mathrm{1}+\frac{\mathrm{1}}{{k}^{\mathrm{3}} }\right)\leqslant\mathrm{3}−\frac{\mathrm{1}}{{n}} \\ $$$$ \\ $$

Commented by KONE last updated on 13/Oct/21

merci bien a vous

$${merci}\:{bien}\:{a}\:{vous} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com