Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 156517 by cortano last updated on 12/Oct/21

∫ (dx/(3tan x+cos x)) =?

$$\int\:\frac{\mathrm{dx}}{\mathrm{3tan}\:\mathrm{x}+\mathrm{cos}\:\mathrm{x}}\:=? \\ $$

Answered by puissant last updated on 12/Oct/21

Q=∫(dx/(3tanx+cosx))  =∫((cosx)/(cos^2 x+3sinx))dx = ∫((cosx)/(1−sin^2 +3sinx))dx  u=sinx → du=cosxdx  ⇒ Q=∫(du/(1+3u−u^2 )) ⇒ Q=∫(du/(((13)/4)−((3/2)−u)^2 ))  ⇒ Q=(4/(13))∫(du/(1−[(2/( (√(13))))((3/2)−u)]^2 ))  t=(2/( (√(13))))((3/2)−u) → dt=−(2/( (√(13))))du→du=−((√(13))/2)dt  ⇒ Q=(4/(13))×((√(13))/2)∫(dt/(t^2 −1))⇒ Q=(2/( (√(13))))argth(t)+C  ⇒ Q=(2/( (√(13)))) argth(((3−2u)/( (√(13)))))+C    ∴∵ Q=∫(dx/(3tanx+cosx))=(2/( (√(13))))argth(((3−2sinx)/( (√(13)))))+C                      ..............Le puissant............

$${Q}=\int\frac{{dx}}{\mathrm{3}{tanx}+{cosx}} \\ $$$$=\int\frac{{cosx}}{{cos}^{\mathrm{2}} {x}+\mathrm{3}{sinx}}{dx}\:=\:\int\frac{{cosx}}{\mathrm{1}−{sin}^{\mathrm{2}} +\mathrm{3}{sinx}}{dx} \\ $$$${u}={sinx}\:\rightarrow\:{du}={cosxdx} \\ $$$$\Rightarrow\:{Q}=\int\frac{{du}}{\mathrm{1}+\mathrm{3}{u}−{u}^{\mathrm{2}} }\:\Rightarrow\:{Q}=\int\frac{{du}}{\frac{\mathrm{13}}{\mathrm{4}}−\left(\frac{\mathrm{3}}{\mathrm{2}}−{u}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:{Q}=\frac{\mathrm{4}}{\mathrm{13}}\int\frac{{du}}{\mathrm{1}−\left[\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}\left(\frac{\mathrm{3}}{\mathrm{2}}−{u}\right)\right]^{\mathrm{2}} } \\ $$$${t}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}\left(\frac{\mathrm{3}}{\mathrm{2}}−{u}\right)\:\rightarrow\:{dt}=−\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}{du}\rightarrow{du}=−\frac{\sqrt{\mathrm{13}}}{\mathrm{2}}{dt} \\ $$$$\Rightarrow\:{Q}=\frac{\mathrm{4}}{\mathrm{13}}×\frac{\sqrt{\mathrm{13}}}{\mathrm{2}}\int\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{1}}\Rightarrow\:{Q}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}{argth}\left({t}\right)+{C} \\ $$$$\Rightarrow\:{Q}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}\:{argth}\left(\frac{\mathrm{3}−\mathrm{2}{u}}{\:\sqrt{\mathrm{13}}}\right)+{C} \\ $$$$ \\ $$$$\therefore\because\:{Q}=\int\frac{{dx}}{\mathrm{3}{tanx}+{cosx}}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{13}}}{argth}\left(\frac{\mathrm{3}−\mathrm{2}{sinx}}{\:\sqrt{\mathrm{13}}}\right)+{C} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:..............\mathscr{L}{e}\:{puissant}............ \\ $$

Commented by cortano last updated on 12/Oct/21

okay. my answer not in arctanh

$$\mathrm{okay}.\:\mathrm{my}\:\mathrm{answer}\:\mathrm{not}\:\mathrm{in}\:\mathrm{arctanh}\: \\ $$

Commented by ARUNG_Brandon_MBU last updated on 12/Oct/21

argtanh(a)=(1/2)ln(((1+a)/(1−a)))

$$\mathrm{argtanh}\left({a}\right)=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\frac{\mathrm{1}+{a}}{\mathrm{1}−{a}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com