Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 156610 by jlewis last updated on 13/Oct/21

If A and B are invertible matrices,then:  (AB)^(−1) =B^(−1) A^(−1) ≠ A^(−1) B^(−1)   proove.

$$\mathrm{If}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{invertible}\:\mathrm{matrices},\mathrm{then}: \\ $$$$\left(\mathrm{AB}\right)^{−\mathrm{1}} =\mathrm{B}^{−\mathrm{1}} \mathrm{A}^{−\mathrm{1}} \neq\:\mathrm{A}^{−\mathrm{1}} \mathrm{B}^{−\mathrm{1}} \\ $$$$\boldsymbol{\mathrm{proove}}. \\ $$

Answered by physicstutes last updated on 14/Oct/21

Consider the theorems AA^(−1)  = I  and BB^(−1)  = I  now assume: (AB)^(−1)  = B^(−1) A^(−1)   pre−multiply both sides by AB  ⇒ AB(AB)^(−1)  = ABB^(−1) A^(−1)   ⇒ I = AIA^(−1)   ⇒ I = AA^(−1)   ⇒ I = I  which is true!   Also consider:  (AB)^(−1)  =A^(−1) B^(−1)   pre−multiply both sides by AB  ⇒ (AB)(AB)^(−1)  = ABA^(−1) B^(−1)   ⇒ I ≠ ABA^(−1) B^(−1)

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{theorems}\:{AA}^{−\mathrm{1}} \:=\:{I} \\ $$$$\mathrm{and}\:{BB}^{−\mathrm{1}} \:=\:{I} \\ $$$$\mathrm{now}\:\mathrm{assume}:\:\left({AB}\right)^{−\mathrm{1}} \:=\:{B}^{−\mathrm{1}} {A}^{−\mathrm{1}} \\ $$$$\mathrm{pre}−\mathrm{multiply}\:\mathrm{both}\:\mathrm{sides}\:\mathrm{by}\:{AB} \\ $$$$\Rightarrow\:{AB}\left({AB}\right)^{−\mathrm{1}} \:=\:{ABB}^{−\mathrm{1}} {A}^{−\mathrm{1}} \\ $$$$\Rightarrow\:{I}\:=\:{AIA}^{−\mathrm{1}} \\ $$$$\Rightarrow\:{I}\:=\:{AA}^{−\mathrm{1}} \\ $$$$\Rightarrow\:{I}\:=\:{I}\:\:\mathrm{which}\:\mathrm{is}\:\mathrm{true}! \\ $$$$\:\mathrm{Also}\:\mathrm{consider}: \\ $$$$\left({AB}\right)^{−\mathrm{1}} \:={A}^{−\mathrm{1}} {B}^{−\mathrm{1}} \\ $$$$\mathrm{pre}−\mathrm{multiply}\:\mathrm{both}\:\mathrm{sides}\:\mathrm{by}\:{AB} \\ $$$$\Rightarrow\:\left({AB}\right)\left({AB}\right)^{−\mathrm{1}} \:=\:{ABA}^{−\mathrm{1}} {B}^{−\mathrm{1}} \\ $$$$\Rightarrow\:{I}\:\neq\:{ABA}^{−\mathrm{1}} {B}^{−\mathrm{1}} \: \\ $$

Answered by TheSupreme last updated on 13/Oct/21

B^(−1) A^(−1) AB=B^(−1) (A^(−1) A)B=B^(−1) B=I  the inequality can be demonstrate with non commutativity of matrix moltiplication

$${B}^{−\mathrm{1}} {A}^{−\mathrm{1}} {AB}={B}^{−\mathrm{1}} \left({A}^{−\mathrm{1}} {A}\right){B}={B}^{−\mathrm{1}} {B}={I} \\ $$$${the}\:{inequality}\:{can}\:{be}\:{demonstrate}\:{with}\:{non}\:{commutativity}\:{of}\:{matrix}\:{moltiplication} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com