Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 156676 by mathlove last updated on 14/Oct/21

Commented by MathSh last updated on 14/Oct/21

(2/a) + (1/b) + (1/c) = 3 ⇒ ((21)/3) = 7

2a+1b+1c=3213=7

Answered by som(math1967) last updated on 14/Oct/21

60=27^a ⇒60^(1/a) =27  60^(1/b) =64    ,60^(1/c) =125  60^((1/a)+(1/b)+(1/c)) =3^3 ×4^3 ×5^3   (60)^((ab+bc+ca)/(abc)) =(60)^3    ((ab+bc+ca)/(abc))=3  ((abc)/(ab+bc+ca))=(1/3)  ∴((21abc)/(ab+bc+ca))=21×(1/3)=7 ans

60=27a601a=27601b=64,601c=125601a+1b+1c=33×43×53(60)ab+bc+caabc=(60)3ab+bc+caabc=3abcab+bc+ca=1321abcab+bc+ca=21×13=7ans

Answered by Rasheed.Sindhi last updated on 14/Oct/21

          An Alternate Approach  (3^a )^3 =(4^b )^3 =(5^c )^3 =60  (3^a )^3 (4^b )^3 (5^c )^3 =(60)^3   3^a 4^b 5^c =60=3^1 .4^1 .5^1   a=b=c=1  ((21abc)/(ab+bc+ca))=((21.1.1.1)/(1.1+1.1+1.1))=((21)/3)=7

AnAlternateApproach(3a)3=(4b)3=(5c)3=60(3a)3(4b)3(5c)3=(60)33a4b5c=60=31.41.51a=b=c=121abcab+bc+ca=21.1.1.11.1+1.1+1.1=213=7

Commented by mr W last updated on 14/Oct/21

but a=b=c=1 doesn′t fulfill the  given condition.

buta=b=c=1doesntfulfillthegivencondition.

Commented by Rasheed.Sindhi last updated on 14/Oct/21

Yes sir the approach is logically  wrong but the answer is by chance  right! Thanks sir!

Yessirtheapproachislogicallywrongbuttheanswerisbychanceright!Thankssir!

Answered by john_santu last updated on 14/Oct/21

 ((21)/((1/c)+(1/a)+(1/b))) = k    { ((27^a =60⇒a=log _(27) (60))),((64^b =60⇒b=log _(64) (60))),((125^c =60⇒c=log _(125) (60))) :}   therefore k=((21)/(log _(60) (125)+log _(60) (27)+log _(60) (64)))   k=((21)/(log _(60) (125×27×64))) =((27)/(log _(60) (60^3 )))   k=((21)/(3log _(60) (60)))=((21)/3)=7.

211c+1a+1b=k{27a=60a=log27(60)64b=60b=log64(60)125c=60c=log125(60)thereforek=21log60(125)+log60(27)+log60(64)k=21log60(125×27×64)=27log60(603)k=213log60(60)=213=7.

Commented by cortano last updated on 14/Oct/21

waw

waw

Commented by peter frank last updated on 14/Oct/21

great

great

Terms of Service

Privacy Policy

Contact: info@tinkutara.com