Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 156743 by cortano last updated on 15/Oct/21

Answered by MJS_new last updated on 15/Oct/21

0≤x≤(1/2) ⇒  ∫(dx/( (((1+x)^2 (1−x)^6 ))^(1/4) ))=  =∫(dx/( (1−x)(√(1−x^2 ))))=       [t=((1+(√(1−x^2 )))/x) → dx=−((x^2 (√(1−x^2 )))/(1+(√(1−x^2 ))))dt]  =−2∫(dt/((t−1)^2 ))=(2/(t−1))=...  =((√(1−x^2 ))/(1−x))−1+C  ⇒  (−1+(√3))∫_0 ^(1/2) (dx/( (((1+x)^2 (1−x)^6 ))^(1/4) ))=4−2(√3)

0x12dx(1+x)2(1x)64==dx(1x)1x2=[t=1+1x2xdx=x21x21+1x2dt]=2dt(t1)2=2t1=...=1x21x1+C(1+3)1/20dx(1+x)2(1x)64=423

Answered by FongXD last updated on 15/Oct/21

=∫_0 ^(1/2) ((((√3)−1)/( (((1+x)^2 (1−x)^2 (1−x)^4 ))^(1/4) )))dx  =∫_0 ^(1/2) [(((√3)−1)/((1−x)(((1−x^2 )^2 ))^(1/4) ))]dx  let x=sinθ, ⇒ dx=cosθdθ  =∫_0 ^(π/6) (((√3)−1)/((1−sinθ)(((1−sin^2 θ)^2 ))^(1/4) ))×cosθdθ  =∫_0 ^(π/6) ((((√3)−1)dθ)/(1−sinθ))=∫_0 ^(π/6) ((((√3)−1)dθ)/((cos(θ/2)−sin(θ/2))^2 ))  =(((√3)−1)/2)∫_0 ^(π/6) (dθ/(cos^2 ((θ/2)+(π/4))))=(((√3)−1)/2)[2tan((θ/2)+(π/4))]_0 ^(π/6)   =((√3)−1)(tan(π/3)−tan(π/4))=((√3)−1)^2 =4−2(√3)  so.  determinant (((∫_0 ^(1/2) ((((√3)−1)/( (((1+x)^2 (1−x)^4 ))^(1/4) )))dx=4−2(√3))))

=012(31(1+x)2(1x)2(1x)44)dx=012[31(1x)(1x2)24]dxletx=sinθ,dx=cosθdθ=0π631(1sinθ)(1sin2θ)24×cosθdθ=0π6(31)dθ1sinθ=0π6(31)dθ(cosθ2sinθ2)2=3120π6dθcos2(θ2+π4)=312[2tan(θ2+π4)]0π6=(31)(tanπ3tanπ4)=(31)2=423so.012(31(1+x)2(1x)44)dx=423

Commented by cortano last updated on 15/Oct/21

yes

yes

Terms of Service

Privacy Policy

Contact: info@tinkutara.com