All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 156743 by cortano last updated on 15/Oct/21
Answered by MJS_new last updated on 15/Oct/21
0⩽x⩽12⇒∫dx(1+x)2(1−x)64==∫dx(1−x)1−x2=[t=1+1−x2x→dx=−x21−x21+1−x2dt]=−2∫dt(t−1)2=2t−1=...=1−x21−x−1+C⇒(−1+3)∫1/20dx(1+x)2(1−x)64=4−23
Answered by FongXD last updated on 15/Oct/21
=∫012(3−1(1+x)2(1−x)2(1−x)44)dx=∫012[3−1(1−x)(1−x2)24]dxletx=sinθ,⇒dx=cosθdθ=∫0π63−1(1−sinθ)(1−sin2θ)24×cosθdθ=∫0π6(3−1)dθ1−sinθ=∫0π6(3−1)dθ(cosθ2−sinθ2)2=3−12∫0π6dθcos2(θ2+π4)=3−12[2tan(θ2+π4)]0π6=(3−1)(tanπ3−tanπ4)=(3−1)2=4−23so.∫012(3−1(1+x)2(1−x)44)dx=4−23
Commented by cortano last updated on 15/Oct/21
yes
Terms of Service
Privacy Policy
Contact: info@tinkutara.com