Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 156744 by joki last updated on 15/Oct/21

y“+y′=e^x +3x

y+y=ex+3x

Answered by qaz last updated on 15/Oct/21

y_p =(1/(D^2 +D))(e^x +3x)  =(1/(D+1))(e^x +(3/2)x^2 )  =(1/2)e^x +(1−D+D^2 −...)(3/2)x^2   =(1/2)e^x +(3/2)x^2 −3x+3  ⇒y=C_1 +C_2 e^(−x) +(1/2)e^x +(3/2)x^2 −3x

yp=1D2+D(ex+3x)=1D+1(ex+32x2)=12ex+(1D+D2...)32x2=12ex+32x23x+3y=C1+C2ex+12ex+32x23x

Commented by puissant last updated on 15/Oct/21

what is the formula like that sir Qaz..?

whatistheformulalikethatsirQaz..?

Answered by mathmax by abdo last updated on 16/Oct/21

y^((2)) +y^′  =e^x  +3x   we put y^′  =z ⇒z^′  +z=e^x  +3x  (e)  h→z^′  +z=0 →(z^′ /z)=−1 ⇒ln∣z∣=−x +c ⇒z=ke^(−x)   let use mvc method   →z^′  =k^′  e^(−x) −ke^(−x)   (e)⇒k^′  e^(−x) −ke^(−x) +ke^(−x)  =e^x  +3x ⇒k^′  e^(−x)  =e^x  +3x ⇒  k^′  =e^(2x)  +3x e^x  ⇒k =∫(e^(2x)  +3xe^x )dx  =(1/2)e^(2x)  +3∫ xe^x  dx  we have   ∫ xe^(x ) dx=_(by parts)    xe^x −∫ e^x  dx=xe^x −e^x  ⇒  k =(1/2)e^(2x)  +(3x−3)e^x  +c  on z =ke^(−x)  ⇒  z =((1/2)e^(2x)  +(3x−3)e^x +c)e^(−x)  =(1/2)e^x  +3x−3 +ce^(−x)   y^′  =z ⇒y =∫ zdx =∫((1/2)e^x  +3x−3 +c e^(−x) )dx  =(1/2)e^x  +(3/2)x^2 −3x −ce^(−x)  +λ

y(2)+y=ex+3xweputy=zz+z=ex+3x(e)hz+z=0zz=1lnz∣=x+cz=kexletusemvcmethodz=kexkex(e)kexkex+kex=ex+3xkex=ex+3xk=e2x+3xexk=(e2x+3xex)dx=12e2x+3xexdxwehavexexdx=bypartsxexexdx=xexexk=12e2x+(3x3)ex+conz=kexz=(12e2x+(3x3)ex+c)ex=12ex+3x3+cexy=zy=zdx=(12ex+3x3+cex)dx=12ex+32x23xcex+λ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com