All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 156914 by cortano last updated on 17/Oct/21
Answered by puissant last updated on 17/Oct/21
D=∫arcsin(1x)x5dx;u=1x→du=−1x2dx⇒D=−∫u5arcsin(u)u2du=−∫u3arcsin(u)duIBP⇒D=−3[u2arcsin(u)]+3∫u21−u2du⇒D=−3u2arcsin(u)−3∫1−u2−11−u2du⇒D=−3u2arcsin(u)−3∫1−u2+3∫11−u2du⇒D=−3u2arcsin(u)−32[t+12sin2t]+3arcsin(u)+C⇒D=−3x2arcsin(1x)−32arcsin(1x)−32sin(2arcsin(1x))+3arcsin(1x)+C∴∵D=3{(12−1x2)arcsin(1x)−12sin(2arcsin(1x))}+C..
Commented by cortano last updated on 17/Oct/21
yes.
Answered by cortano last updated on 17/Oct/21
Terms of Service
Privacy Policy
Contact: info@tinkutara.com