Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 156915 by mnjuly1970 last updated on 17/Oct/21

Answered by qaz last updated on 07/Nov/21

∫_0 ^∞ (dx/((π^2 +x^2 )cosh x))  =∫_(−∞) ^(+∞) (e^x /((e^(2x) +1)(π^2 +x^2 )))dx  =∫_(−∞) ^(+∞) (e^x /(e^(2x) +1))∙(1/π)ℜ∫_0 ^∞ e^(−(π−ix)y) dydx  =(1/π)ℜ∫_0 ^∞ e^(−πy) dy∫_(−∞) ^(+∞) (e^(x(1+iy)) /(e^(2x) +1))dx  =(1/(2π))ℜ∫_0 ^∞ e^(−πy) dy∫_0 ^∞ (t^((iy−1)/2) /(t+1))dt.......e^x →t  =(1/2)ℜ∫_0 ^∞ (e^(−πy) /(sin (((iy+1)/2)π)))dy  =(1/2)∫_0 ^∞ (e^(−πy) /(cosh ((πy)/2)))dy  =(1/π)∫_0 ^∞ ((2e^(−3y) )/(1+e^(−2y) ))dy  =(2/π)Σ_(n=0) ^∞ (−1)^n ∫_0 ^∞ e^(−(2n+3)y) dy  =(2/π)Σ_(n=0) ^∞ (((−1)^n )/(2n+3))  =(2/π)(1−(π/4))  =(2/π)−(1/2)

0dx(π2+x2)coshx=+ex(e2x+1)(π2+x2)dx=+exe2x+11π0e(πix)ydydx=1π0eπydy+ex(1+iy)e2x+1dx=12π0eπydy0tiy12t+1dt.......ext=120eπysin(iy+12π)dy=120eπycoshπy2dy=1π02e3y1+e2ydy=2πn=0(1)n0e(2n+3)ydy=2πn=0(1)n2n+3=2π(1π4)=2π12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com