Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 156921 by cortano last updated on 17/Oct/21

x^3 −4x^2 −3=0   x∈R

x34x23=0xR

Answered by mr W last updated on 17/Oct/21

path 1:  ((1/x))^3 +(4/3)((1/x))−(1/3)=0  applying cardano:  (1/x)=(((√(((1/6))^2 +((4/9))^3 ))+(1/6)))^(1/3) −(((√(((1/6))^2 +((4/9))^3 ))−(1/6)))^(1/3)   ⇒x=(1/( ((((√(337))/(54))+(1/6)))^(1/3) −((((√(337))/(54))−(1/6)))^(1/3) ))≈4.1723    path 2:  let x=t+(4/3)  t^3 +3×(4/3)t^2 +3×((16)/9)t+(4^3 /3^3 )−4(t^2 +2×(4/3)t+(4^2 /3^2 ))−3=0  t^3 −((16)/3)t−((209)/(27))=0  applying cardano:  t=(((√((((209)/(54)))^2 −(((16)/9))^3 ))+((209)/(54))))^(1/3) −(((√((((209)/(54)))^2 −(((16)/9))^3 ))−((209)/(54))))^(1/3)   x=(4/3)+((((√(337))/6)+((209)/(54))))^(1/3) −((((√(337))/6)−((209)/(54))))^(1/3) ≈4.1723

path1:(1x)3+43(1x)13=0applyingcardano:1x=(16)2+(49)3+163(16)2+(49)3163x=133754+163337541634.1723path2:letx=t+43t3+3×43t2+3×169t+43334(t2+2×43t+4232)3=0t3163t20927=0applyingcardano:t=(20954)2(169)3+209543(20954)2(169)3209543x=43+3376+20954333762095434.1723

Commented by cortano last updated on 17/Oct/21

cardano by cortano

cardanobycortano

Terms of Service

Privacy Policy

Contact: info@tinkutara.com