Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 156923 by MathSh last updated on 17/Oct/21

𝛀 =∫_( 0) ^( (𝛑/4)) x log (1 + tanx) dx = ?

Ξ©=βˆ«Ο€40xlog(1+tanx)dx=?

Answered by mindispower last updated on 18/Oct/21

∫_0 ^(Ο€/4) xln(cos(x))dx=a...?  ln(cos(x))=βˆ’Ξ£_(kβ‰₯1) (((βˆ’1)^k cos(2kx))/k)βˆ’ln(2)..fourie sere  a=βˆ’Ξ£_(kβ‰₯1) (((βˆ’1)^k )/k)∫_0 ^(Ο€/4) xcos(2kx)dxβˆ’ln(2)∫_0 ^(Ο€/4) xdx  =βˆ’Ξ£_(kβ‰₯1) (((βˆ’1)^k )/k){[((xsin(2kx))/(2k))]_0 ^(Ο€/4) +(1/(4k^2 ))[cos(2kx)]_0 ^(Ο€/4) βˆ’(Ο€^2 /(32))ln(2)  =βˆ’(Ξ£_(kβ‰₯1) (((βˆ’1)^k sin(((kΟ€)/2)))/(2k^2 ))+(((βˆ’1)^k cos(((kΟ€)/2)))/(4k^3 )))  spit k=2m,k=2m+1we get withe sin(Ο€m)=0  sin(Ο€m+(Ο€/2))=(βˆ’1)^m ,cos(mΟ€)=(βˆ’1)^m ,cos(mΟ€+(Ο€/2))=(βˆ’1)^m   =Ξ£_(mβ‰₯0) (((βˆ’1)^m )/(2(2m+1)^2 ))βˆ’Ξ£_(mβ‰₯1) (((βˆ’1)^m )/(32m^3 ))  =(1/2)𝛃(βˆ’1)βˆ’(1/(32))Li_3 (βˆ’1)=(G/2)+(3/(4.32))ΞΆ(3)βˆ’((Ο€^2 ln(2))/(32))  ∫_0 ^(Ο€/4) ln(cos(x))dx,∫_0 ^(Ο€/4) ln(tg(x))=G  ∫_0 ^(Ο€/2) ln(sinx)dx=βˆ’(Ο€/2)ln(2)  cos(x)=(1/2)ln(((sin(x)cos(x))/(sin(x)))cos(x)),x∈[0,(Ο€/2)]  =(1/2)ln(sin(2x))βˆ’((ln(tg(x)))/2)  β‡’βˆ«_0 ^(Ο€/4) ln(cos(x))=(Ο€/8)ln(2)βˆ’(G/2)  Ξ©=∫_0 ^(Ο€/4) xln((((√2)sin(x+(Ο€/4)))/(cos(x))))dx  =((ln(2))/2)∫_0 ^(Ο€/4) xdx+∫_0 ^(Ο€/4) xln(sin(x+(Ο€/4)))dxβˆ’βˆ«_0 ^(Ο€/4) xln(cos(x))dx  =((ln(2))/(32))Ο€^2 +∫_0 ^(Ο€/4) (Ο€/4)ln(cos(x))dxβˆ’2∫_0 ^(Ο€/4) xln(cos(x))dx  =((ln(2))/(32))Ο€^2 +(Ο€/4)(((Ο€ln2)/8)βˆ’(G/2))βˆ’2((G/2)+((3ΞΆ(1))/(128))βˆ’((Ο€^2 ln(2))/(32)))  =βˆ’((Ο€/8)+1)G+((Ο€^2 ln(2))/8)βˆ’(3/(64))ΞΆ(3)

∫0Ο€4xln(cos(x))dx=a...?ln(cos(x))=βˆ’βˆ‘kβ©Ύ1(βˆ’1)kcos(2kx)kβˆ’ln(2)..fourieserea=βˆ’βˆ‘kβ©Ύ1(βˆ’1)kk∫0Ο€4xcos(2kx)dxβˆ’ln(2)∫0Ο€4xdx=βˆ’βˆ‘kβ©Ύ1(βˆ’1)kk{[xsin(2kx)2k]0Ο€4+14k2[cos(2kx)]0Ο€4βˆ’Ο€232ln(2)=βˆ’(βˆ‘kβ©Ύ1(βˆ’1)ksin(kΟ€2)2k2+(βˆ’1)kcos(kΟ€2)4k3)spitk=2m,k=2m+1wegetwithesin(Ο€m)=0sin(Ο€m+Ο€2)=(βˆ’1)m,cos(mΟ€)=(βˆ’1)m,cos(mΟ€+Ο€2)=(βˆ’1)m=βˆ‘mβ©Ύ0(βˆ’1)m2(2m+1)2βˆ’βˆ‘mβ©Ύ1(βˆ’1)m32m3=12Ξ²(βˆ’1)βˆ’132Li3(βˆ’1)=G2+34.32ΞΆ(3)βˆ’Ο€2ln(2)32∫0Ο€4ln(cos(x))dx,∫0Ο€4ln(tg(x))=G∫0Ο€2ln(sinx)dx=βˆ’Ο€2ln(2)cos(x)=12ln(sin(x)cos(x)sin(x)cos(x)),x∈[0,Ο€2]=12ln(sin(2x))βˆ’ln(tg(x))2β‡’βˆ«0Ο€4ln(cos(x))=Ο€8ln(2)βˆ’G2Ξ©=∫0Ο€4xln(2sin(x+Ο€4)cos(x))dx=ln(2)2∫0Ο€4xdx+∫0Ο€4xln(sin(x+Ο€4))dxβˆ’βˆ«0Ο€4xln(cos(x))dx=ln(2)32Ο€2+∫0Ο€4Ο€4ln(cos(x))dxβˆ’2∫0Ο€4xln(cos(x))dx=ln(2)32Ο€2+Ο€4(Ο€ln28βˆ’G2)βˆ’2(G2+3ΞΆ(1)128βˆ’Ο€2ln(2)32)=βˆ’(Ο€8+1)G+Ο€2ln(2)8βˆ’364ΞΆ(3)

Commented by MathSh last updated on 18/Oct/21

Perfect dear Ser, thank you so much

PerfectdearSer,thankyousomuch

Commented by mindispower last updated on 19/Oct/21

withe Pleasur

withePleasur

Terms of Service

Privacy Policy

Contact: info@tinkutara.com