All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 156923 by MathSh last updated on 17/Oct/21
Ξ©=β«Ο40xlog(1+tanx)dx=?
Answered by mindispower last updated on 18/Oct/21
β«0Ο4xln(cos(x))dx=a...?ln(cos(x))=ββkβ©Ύ1(β1)kcos(2kx)kβln(2)..fourieserea=ββkβ©Ύ1(β1)kkβ«0Ο4xcos(2kx)dxβln(2)β«0Ο4xdx=ββkβ©Ύ1(β1)kk{[xsin(2kx)2k]0Ο4+14k2[cos(2kx)]0Ο4βΟ232ln(2)=β(βkβ©Ύ1(β1)ksin(kΟ2)2k2+(β1)kcos(kΟ2)4k3)spitk=2m,k=2m+1wegetwithesin(Οm)=0sin(Οm+Ο2)=(β1)m,cos(mΟ)=(β1)m,cos(mΟ+Ο2)=(β1)m=βmβ©Ύ0(β1)m2(2m+1)2ββmβ©Ύ1(β1)m32m3=12Ξ²(β1)β132Li3(β1)=G2+34.32ΞΆ(3)βΟ2ln(2)32β«0Ο4ln(cos(x))dx,β«0Ο4ln(tg(x))=Gβ«0Ο2ln(sinx)dx=βΟ2ln(2)cos(x)=12ln(sin(x)cos(x)sin(x)cos(x)),xβ[0,Ο2]=12ln(sin(2x))βln(tg(x))2ββ«0Ο4ln(cos(x))=Ο8ln(2)βG2Ξ©=β«0Ο4xln(2sin(x+Ο4)cos(x))dx=ln(2)2β«0Ο4xdx+β«0Ο4xln(sin(x+Ο4))dxββ«0Ο4xln(cos(x))dx=ln(2)32Ο2+β«0Ο4Ο4ln(cos(x))dxβ2β«0Ο4xln(cos(x))dx=ln(2)32Ο2+Ο4(Οln28βG2)β2(G2+3ΞΆ(1)128βΟ2ln(2)32)=β(Ο8+1)G+Ο2ln(2)8β364ΞΆ(3)
Commented by MathSh last updated on 18/Oct/21
PerfectdearSer,thankyousomuch
Commented by mindispower last updated on 19/Oct/21
withePleasur
Terms of Service
Privacy Policy
Contact: info@tinkutara.com