Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 156993 by amin96 last updated on 18/Oct/21

lim_(n→∞) (sin(sin(sin…(sin(x))…)_(n)  (√n)=?  0<x<π

Extra \left or missing \right 0<x<π

Commented byMathSh last updated on 18/Oct/21

0<x<π  or  0≤x≤π.?

0<x<πor0xπ.?

Commented byamin96 last updated on 18/Oct/21

no   0<x<π

no0<x<π

Commented byMathSh last updated on 18/Oct/21

a_x =lim_(n→∞) f_n (x) → a_x =sina_x  → a_x =0  f_n (x)∼αn^(-r)   f_(n+1) =sin f_n =f_n -((1/6))f_n ^3 +O(f_n ^5 )  αn^(-r) (1+(1/n))^(-r) ∼ αn^(-r) [1-((1/6))(αn^(-r) )^2 +O(n^(-4r) )]  -rn^(-1) = - (α^2 /6) n^(-2r)   α = (√3) → r = (1/2)  ⇒lim_(n→∞) n^r  f_n (x) = α = (√3) •

Double subscripts: use braces to clarify fn(x)αnr fn+1=sinfn=fn(16)fn3+O(fn5) αnr(1+1n)rαnr[1(16)(αnr)2+O(n4r)] rn1=α26n2r α=3r=12 limnnrfn(x)=α=3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com