Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 157003 by MathSh last updated on 18/Oct/21

let  n∈Z^+   shov that  ∫_( 0) ^( ∞)  ((sin(x^(-n) )ln(x))/x) dx = ((π𝛄)/(2n^2 ))   where  𝛄  is the Euler-Mascheroni constan

$$\mathrm{let}\:\:\boldsymbol{\mathrm{n}}\in\mathbb{Z}^{+} \\ $$$$\mathrm{shov}\:\mathrm{that}\:\:\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{sin}\left(\mathrm{x}^{-\boldsymbol{\mathrm{n}}} \right)\mathrm{ln}\left(\mathrm{x}\right)}{\mathrm{x}}\:\mathrm{dx}\:=\:\frac{\pi\boldsymbol{\gamma}}{\mathrm{2n}^{\mathrm{2}} }\: \\ $$$$\mathrm{where}\:\:\boldsymbol{\gamma}\:\:\mathrm{is}\:\mathrm{the}\:\mathrm{Euler}-\mathrm{Mascheroni}\:\mathrm{constan}\: \\ $$

Answered by mindispower last updated on 18/Oct/21

∫_0 ^∞ ((sin(x^n )ln(x))/x)dx=Δ  =∫_0 ^∞ ((sin(x^n )ln(x^n ))/(nx^n )).x^(n−1) dx=(1/n^2 )∫_0 ^∞ ((sin(x^n )ln(x^n ))/x^n )dx^n   =(1/n^2 )∫_0 ^∞ ((sin(t))/t)ln(t)  f(a)=∫_0 ^∞ sin(t)t^a dt=Im∫_0 ^∞ e^(it) t^a dt  =Im.∫_0 ^(i∞) e^(−t) (it)^a .idt  =Imi^(a+1) ∫_0 ^∞ t^a e^(−t) dt=sin(((a+1)/2)π)Γ(1+a)  Δ=(1/n^2 )f′(−1)=(π/(2n^2 ))lim_(a→0) (cos((a/2)π)Γ(a)+Γ′(a)a)  Γ′(a)=Ψ(a)Γ(a)  =lim_(a→0) (π/(2n^2 ))(Γ(a)+Ψ(a)Γ(a)a)  Ψ(1+a)=Ψ(a)+(1/a)⇒aΨ(a)=aΨ(1+a)−1  =lim_(a→0) (π/(2n^2 ))(Γ(a)+aΨ(1+a)Γ(a)−Γ(a))  =lim_(a→0) .(π/(2n^2 ))(Γ(1+a)Ψ(1+a))=(π/(2n^2 ))Ψ(1)=((πγ)/(2n^2 ))

$$\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({x}^{{n}} \right){ln}\left({x}\right)}{{x}}{dx}=\Delta \\ $$$$=\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({x}^{{n}} \right){ln}\left({x}^{{n}} \right)}{{nx}^{{n}} }.{x}^{\boldsymbol{{n}}−\mathrm{1}} \boldsymbol{{dx}}=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({x}^{{n}} \right){ln}\left({x}^{{n}} \right)}{{x}^{{n}} }{dx}^{{n}} \\ $$$$=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({t}\right)}{{t}}{ln}\left({t}\right) \\ $$$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} {sin}\left({t}\right){t}^{{a}} {dt}={Im}\int_{\mathrm{0}} ^{\infty} {e}^{{it}} {t}^{{a}} {dt} \\ $$$$={Im}.\int_{\mathrm{0}} ^{{i}\infty} {e}^{−{t}} \left({it}\right)^{{a}} .{idt} \\ $$$$={Imi}^{{a}+\mathrm{1}} \int_{\mathrm{0}} ^{\infty} {t}^{{a}} {e}^{−{t}} {dt}={sin}\left(\frac{{a}+\mathrm{1}}{\mathrm{2}}\pi\right)\Gamma\left(\mathrm{1}+{a}\right) \\ $$$$\Delta=\frac{\mathrm{1}}{{n}^{\mathrm{2}} }{f}'\left(−\mathrm{1}\right)=\frac{\pi}{\mathrm{2}{n}^{\mathrm{2}} }\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\left({cos}\left(\frac{{a}}{\mathrm{2}}\pi\right)\Gamma\left({a}\right)+\Gamma'\left({a}\right){a}\right) \\ $$$$\Gamma'\left({a}\right)=\Psi\left({a}\right)\Gamma\left({a}\right) \\ $$$$=\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\pi}{\mathrm{2}{n}^{\mathrm{2}} }\left(\Gamma\left({a}\right)+\Psi\left({a}\right)\Gamma\left({a}\right){a}\right) \\ $$$$\Psi\left(\mathrm{1}+{a}\right)=\Psi\left({a}\right)+\frac{\mathrm{1}}{{a}}\Rightarrow{a}\Psi\left({a}\right)={a}\Psi\left(\mathrm{1}+{a}\right)−\mathrm{1} \\ $$$$=\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\pi}{\mathrm{2}{n}^{\mathrm{2}} }\left(\Gamma\left({a}\right)+{a}\Psi\left(\mathrm{1}+{a}\right)\Gamma\left({a}\right)−\Gamma\left({a}\right)\right) \\ $$$$=\underset{{a}\rightarrow\mathrm{0}} {\mathrm{lim}}.\frac{\pi}{\mathrm{2}{n}^{\mathrm{2}} }\left(\Gamma\left(\mathrm{1}+{a}\right)\Psi\left(\mathrm{1}+{a}\right)\right)=\frac{\pi}{\mathrm{2}{n}^{\mathrm{2}} }\Psi\left(\mathrm{1}\right)=\frac{\pi\gamma}{\mathrm{2}{n}^{\mathrm{2}} } \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by MathSh last updated on 18/Oct/21

Perfect dear Ser, thank you

$$\mathrm{Perfect}\:\mathrm{dear}\:\mathrm{Ser},\:\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com