Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 157061 by mathocean1 last updated on 19/Oct/21

  Show that ∀ n ∈ N,   ⌊((√n)+(√(n+1)))^2 ⌋=4n+1

$$ \\ $$$${Show}\:{that}\:\forall\:{n}\:\in\:\mathbb{N},\: \\ $$$$\lfloor\left(\sqrt{{n}}+\sqrt{{n}+\mathrm{1}}\right)^{\mathrm{2}} \rfloor=\mathrm{4}{n}+\mathrm{1} \\ $$

Answered by apriadodir last updated on 19/Oct/21

answer:  ⌊((√n) + (√(n+1)) )^2  ⌋ =  ⌊n+(n+1)+2((√(n(n+1))) )⌋           = 2n+1+2(√(n(n)))    (because 2(√(n(n))) ≤ 2(√(n(n+1))) )           = 2n+1+2n           = 4n +1

$$\mathrm{answer}: \\ $$$$\lfloor\left(\sqrt{\mathrm{n}}\:+\:\sqrt{\mathrm{n}+\mathrm{1}}\:\right)^{\mathrm{2}} \:\rfloor\:=\:\:\lfloor\mathrm{n}+\left(\mathrm{n}+\mathrm{1}\right)+\mathrm{2}\left(\sqrt{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}\:\right)\rfloor \\ $$$$\:\:\:\:\:\:\:\:\:=\:\mathrm{2n}+\mathrm{1}+\mathrm{2}\sqrt{\mathrm{n}\left(\mathrm{n}\right)}\:\:\:\:\left(\mathrm{because}\:\mathrm{2}\sqrt{\mathrm{n}\left(\mathrm{n}\right)}\:\leqslant\:\mathrm{2}\sqrt{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:=\:\mathrm{2n}+\mathrm{1}+\mathrm{2n} \\ $$$$\:\:\:\:\:\:\:\:\:=\:\mathrm{4n}\:+\mathrm{1} \\ $$

Answered by mindispower last updated on 19/Oct/21

[n+x]=n+[x]  [((√n)+(√(1+n)))^2 ]=[1+2n+2(√(n(n+1)))]  =1+2n+[2(√(n(1+n)))]...(E)  n.n<n(n+1)<(n+(1/2))(n+(1/2))  ⇒2(√n^2 )<2(√(n(n+1)))<2(n+(1/2))=2n+1  ⇒2n≤2(√(n(n+1)))<2n+1⇒[(√(n(n+1)))]=2n  ⇒[(√n)+(√(1+n))]^2 =4n+1

$$\left[{n}+{x}\right]={n}+\left[{x}\right] \\ $$$$\left[\left(\sqrt{{n}}+\sqrt{\mathrm{1}+{n}}\right)^{\mathrm{2}} \right]=\left[\mathrm{1}+\mathrm{2}{n}+\mathrm{2}\sqrt{{n}\left({n}+\mathrm{1}\right)}\right] \\ $$$$\left.=\mathrm{1}+\mathrm{2}{n}+\left[\mathrm{2}\sqrt{{n}\left(\mathrm{1}+{n}\right.}\right)\right]...\left({E}\right) \\ $$$${n}.{n}<{n}\left({n}+\mathrm{1}\right)<\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\mathrm{2}\sqrt{{n}^{\mathrm{2}} }<\mathrm{2}\sqrt{{n}\left({n}+\mathrm{1}\right)}<\mathrm{2}\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{2}{n}+\mathrm{1} \\ $$$$\Rightarrow\mathrm{2}{n}\leqslant\mathrm{2}\sqrt{{n}\left({n}+\mathrm{1}\right)}<\mathrm{2}{n}+\mathrm{1}\Rightarrow\left[\sqrt{{n}\left({n}+\mathrm{1}\right)}\right]=\mathrm{2}{n} \\ $$$$\Rightarrow\left[\sqrt{{n}}+\sqrt{\mathrm{1}+{n}}\right]^{\mathrm{2}} =\mathrm{4}{n}+\mathrm{1} \\ $$$$ \\ $$$$ \\ $$

Commented by mathocean1 last updated on 19/Oct/21

Thanks guys.

$${Thanks}\:{guys}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com