All Questions Topic List
Differential Equation Questions
Previous in All Question Next in All Question
Previous in Differential Equation Next in Differential Equation
Question Number 157141 by cortano last updated on 20/Oct/21
{d2ydx2−2dydx+y=3e4xy(0)=−23;dydx∣x=0=133
Commented by john_santu last updated on 21/Oct/21
{y″−2y′+y=3e4xy(0)=−23;y′(0)=133Bywronskianmethod⇒λ2−2λ+1=0⇒λ1,2=1⇒yh=Aex+BxexParticularsolutionW(u1,u2)=|exxexexex+xex|=e2xW1=|0xex3e4xex+xex|=−3xe5xW2=|ex0ex3e4x|=3e5x⇒v1=∫w1wdx=∫−3xe5xe2xdx=−3∫xe3xdx=−3[13xe3x−19e3x]=−xe3x+13e3x⇒v2=∫w2wdx=∫3e5xe2xdx=∫3e3xdx=e3x⇒yp=u1v1+u2v2=ex(−xe3x+13e3x)+xex(e3x)⇒yp=13e4xyg=Aex+Bxex+13e4x{x=0⇒A+13=−23;A=−1y′=Aex+Bex+Bxex+43e4xy′(0)=−1+B+43=133⇒B=4⇔∴y=−ex+4xex+13e4x
Answered by qaz last updated on 21/Oct/21
yp=1D2−2D+13e4x=142−2⋅4+13e4x=13e4x⇒y=(C1+C2x)ex+13e4x{y(0)=C1+13=−23y(0)′=C2+C1+43=133⇒C1=−1C2=4⇒y=(4x−1)ex+13e4x
Terms of Service
Privacy Policy
Contact: info@tinkutara.com