All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 157175 by cortano last updated on 20/Oct/21
Commented by puissant last updated on 20/Oct/21
Ω=π24
Answered by Mathspace last updated on 20/Oct/21
I=∫0∞ln(1+e−x1−e−x)dx=∫0∞ln(1+e−x)dx−∫0∞ln(1−e−x)dxln′(1+u)dx=11+u=Σ(−1)nun⇒ln(1+u)=∑n=0∞(−1)nun+1n+1=∑n=1∞(−1)n−1unn⇒ln(1+e−x)=∑n=1∞(−1)n−1e−nxnand∫0∞ln(1+e−x)dx=∑n=1∞(−1)n−1n∫0∞e−nxdx=∑n=1∞(−1)n−1n(−1n)[e−nx]0∞=−∑n=1∞(−1)nn2=−δ(2)=−(21−2−1)ξ(2)=−(12−1)×π26=π212ln′(1−u)=−11−u=−∑n=0∞un⇒ln(1−u)=−∑n=0∞un+1n+1=−∑n=1∞unn⇒ln(1−e−x)=−∑n=1∞e−nxn⇒∫0∞ln(1−e−x)dx=−∑n=1∞1n∫0∞e−nxdx=−∑n=1∞1n[−1ne−nx]0∞=−∑n=1∞1n2=−π26⇒I=π212+π26=3π212⇒I=π24
anotherwayΨ=∫0∞ln(ex+1ex−1)dx⇒Ψ=∫0∞ln(1+e−x1−e−x)dx=∫0∞ln(1+e−x)dx−∫0∞ln(1−e−x)dxwehave∫0∞ln(1−e−x)dx=e−x=t∫10ln(1−t)(−dtt)=∫01ln(1−t)tdt=∫011t(−∑n=1∞tnn)dt=−∑n=1∞1n∫01tn−1dt=−∑n=1∞1n2=−π26∫0∞ln(1+e−x)dx=e−x=t∫10ln(1+t)(−dtt)=∫01ln(1+t)tdtln′(1+t)=Σ(−1)nun⇒ln(1+t)=∑n=0∞(−1)nn+1tn+1=∑n=1∞(−1)n−1tnn⇒∫01ln(1+t)tdt=∫011t∑n=1∞(−1)n−1tnn=∑n=1∞(−1)n−1n∫01tn−1dt=∑n=1∞(−1)n−1n2=π212⇒Ψ=π212−(−π26)=π212+π26=π24
Terms of Service
Privacy Policy
Contact: info@tinkutara.com