Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 157175 by cortano last updated on 20/Oct/21

Commented by puissant last updated on 20/Oct/21

Ω=(π^2 /4)

Ω=π24

Answered by Mathspace last updated on 20/Oct/21

I=∫_0 ^∞ ln(((1+e^(−x) )/(1−e^(−x) )))dx  =∫_0 ^∞ ln(1+e^(−x) )dx−∫_0 ^∞ ln(1−e^(−x)) dx  ln^′ (1+u)dx=(1/(1+u))=Σ(−1)^n u^n  ⇒  ln(1+u)=Σ_(n=0) ^∞ (−1)^n (u^(n+1) /(n+1))  =Σ_(n=1) ^(∞ )  (−1)^(n−1 ) (u^n /n) ⇒  ln(1+e^(−x) )=Σ_(n=1) ^∞  (−1)^(n−1)  (e^(−nx) /n)  and ∫_0 ^∞ ln(1+e^(−x) )dx  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)∫_0 ^∞  e^(−nx) dx  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)(−(1/n))[e^(−nx) ]_0 ^∞   =−Σ_(n=1) ^∞ (((−1)^n )/n^2 )=−δ(2)  =−(2^(1−2) −1)ξ(2)  =−((1/2)−1)×(π^2 /6)=(π^2 /(12))  ln^′ (1−u)=−(1/(1−u))=−Σ_(n=0) ^∞  u^(n ) ⇒  ln(1−u)=−Σ_(n=0) ^∞  (u^(n+1) /(n+1))  =−Σ_(n=1) ^∞  (u^n /n) ⇒ln(1−e^(−x) )  =−Σ_(n=1) ^∞  (e^(−nx) /n) ⇒  ∫_0 ^∞ ln(1−e^(−x) )dx  =−Σ_(n=1) ^∞  (1/n)∫_0 ^∞ e^(−nx) dx  =−Σ_(n=1) ^∞ (1/n)[−(1/n)e^(−nx) ]_0 ^∞   =−Σ_(n=1) ^∞  (1/n^2 )=−(π^2 /6) ⇒  I=(π^2 /(12))+(π^2 /6)=((3π^2 )/(12))⇒I=(π^2 /4)

I=0ln(1+ex1ex)dx=0ln(1+ex)dx0ln(1ex)dxln(1+u)dx=11+u=Σ(1)nunln(1+u)=n=0(1)nun+1n+1=n=1(1)n1unnln(1+ex)=n=1(1)n1enxnand0ln(1+ex)dx=n=1(1)n1n0enxdx=n=1(1)n1n(1n)[enx]0=n=1(1)nn2=δ(2)=(2121)ξ(2)=(121)×π26=π212ln(1u)=11u=n=0unln(1u)=n=0un+1n+1=n=1unnln(1ex)=n=1enxn0ln(1ex)dx=n=11n0enxdx=n=11n[1nenx]0=n=11n2=π26I=π212+π26=3π212I=π24

Answered by Mathspace last updated on 20/Oct/21

another way  Ψ=∫_0 ^∞ ln(((e^x +1)/(e^x −1)))dx ⇒  Ψ=∫_0 ^∞ ln(((1+e^(−x) )/(1−e^(−x) )))dx  =∫_0 ^∞ ln(1+e^(−x) )dx−∫_0 ^∞ ln(1−e^(−x)) dx  we have   ∫_0 ^∞ ln(1−e^(−x) )dx=_(e^(−x) =t)  ∫_1 ^0 ln(1−t)(−(dt/t))  =∫_0 ^1  ((ln(1−t))/t)dt  =∫_0 ^1 (1/t)(−Σ_(n=1) ^(∞ ) (t^n /n))dt  =−Σ_(n=1) ^(∞ ) (1/n)∫_0 ^(1 ) t^(n−1) dt  =−Σ_(n=1) ^(∞ ) (1/n^2 )=−(π^2 /6)  ∫_0 ^∞ ln(1+e^(−x) )dx =_(e^(−x) =t)   ∫_1 ^0  ln(1+t)(−(dt/t))=∫_0 ^1  ((ln(1+t))/t)dt  ln^′ (1+t)=Σ(−1)^n u^n  ⇒  ln(1+t)=Σ_(n=0) ^∞  (((−1)^n )/(n+1))t^(n+1)   =Σ_(n=1) ^∞  (((−1)^(n−1)  t^n )/n) ⇒  ∫_0 ^1 ((ln(1+t))/t)dt=∫_0 ^1 (1/t)Σ_(n=1) ^∞  (((−1)^(n−1) t^n )/n)  =Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^1 t^(n−1) dt  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n^2 )=(π^2 /(12)) ⇒  Ψ=(π^2 /(12))−(−(π^2 /6))=(π^2 /(12))+(π^2 /6) =(π^2 /4)

anotherwayΨ=0ln(ex+1ex1)dxΨ=0ln(1+ex1ex)dx=0ln(1+ex)dx0ln(1ex)dxwehave0ln(1ex)dx=ex=t10ln(1t)(dtt)=01ln(1t)tdt=011t(n=1tnn)dt=n=11n01tn1dt=n=11n2=π260ln(1+ex)dx=ex=t10ln(1+t)(dtt)=01ln(1+t)tdtln(1+t)=Σ(1)nunln(1+t)=n=0(1)nn+1tn+1=n=1(1)n1tnn01ln(1+t)tdt=011tn=1(1)n1tnn=n=1(1)n1n01tn1dt=n=1(1)n1n2=π212Ψ=π212(π26)=π212+π26=π24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com