All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 157196 by MathSh last updated on 20/Oct/21
Answered by mindispower last updated on 21/Oct/21
π364ln(2)−3∫01ln(1+x)1+x2tan−1(x)2dx=−3∫0π4ln(1+tg(t))t2dtt∫0π4ln(1+tg(t))t2dt=∫0π4ln(1+tg(π4−t))(π4−t)2⇒2∫0π4ln(1+tg(t))t2dt=∫0π4ln(2)t2−π216∫0π4ln(1+tan(t))dt+π2∫0π4tln(1+tg(t))dt=A−π216B+π2CA=ln(2)3(π364)C=∫0π4ln(2sin(π4+x)cos(x))tdt=−2∫0π4ln(cos(t))tdt=Y+ln(2)2.π4Y=2∫0π4∑k⩾1(−1)kcos(2kx)kxdx+2∫0π4ln(2)tdt=2∑k⩾1(−1)kk[π8ksin(kπ2)+cos(kπ2)−14k2]+ln(2)π216=−2∑k⩾0(−1)kπ8(2k+1)2−12∑k⩾1(−1)kk3+12∑k⩾1(−1)k8k3+ln(2)π216−2(π8C−21128ζ(3)−π232ln(2))=−2(16πC−21ζ(3)−4π2ln(2)128)+πln(2)32∫0π4ln(1+tg(t))dt=B=∫0π4ln(21+tg(t))=B⇔B=π8ln(2)A=ln(2)3.π364∫0π4t2ln(1+tan(t))dt=12(ln(2)3.π364−π216(πln(2)8)−2π(16πC−21ζ(3)−4π2ln(2)128)+π22.ln(2)32)=Ω∫01(tan−(x))31+xdx=π3ln(2)64−3Ω
Commented by MathSh last updated on 21/Oct/21
PerfectdearSer,thankyousomuch
Terms of Service
Privacy Policy
Contact: info@tinkutara.com