Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 157196 by MathSh last updated on 20/Oct/21

Answered by mindispower last updated on 21/Oct/21

(π^3 /(64))ln(2)−3∫_0 ^1 ((ln(1+x))/(1+x^2 ))tan^(−1) (x)^2 dx  =−3∫_0 ^(π/4) ln(1+tg(t))t^2 dtt  ∫_0 ^(π/4) ln(1+tg(t))t^2 dt=∫_0 ^(π/4) ln(1+tg((π/4)−t))((π/4)−t)^2   ⇒2∫_0 ^(π/4) ln(1+tg(t))t^2 dt=∫_0 ^(π/4) ln(2)t^2 −(π^2 /(16))∫_0 ^(π/4) ln(1+tan(t))dt  +(π/2)∫_0 ^(π/4) tln(1+tg(t))dt  =A−(π^2 /(16))B+(π/2)C  A=((ln(2))/3)((π^3 /(64)))  C=∫_0 ^(π/4) ln((((√2)sin((π/4)+x))/(cos(x))))tdt  =−2∫_0 ^(π/4) ln(cos(t))tdt_(=Y) +((ln((√2)))/2).(π/4)  Y=2∫_0 ^(π/4) Σ_(k≥1) (−1)^k ((cos(2kx))/k)xdx+2∫_0 ^(π/4) ln(2)tdt  =2Σ_(k≥1) (((−1)^k )/k)[(π/(8k))sin(((kπ)/2))+((cos(((kπ)/2))−1)/(4k^2 ))]+((ln(2)π^2 )/(16))  =−2Σ_(k≥0) (((−1)^k π)/(8(2k+1)^2 ))−(1/2)Σ_(k≥1) (((−1)^k )/k^3 )+(1/2)Σ_(k≥1) (((−1)^k )/(8k^3 ))+((ln(2)π^2 )/(16))  −2((π/8)C−((21)/(128))ζ(3)−(π^2 /(32))ln(2))  =−2(((16πC−21ζ(3)−4π^2 ln(2))/(128)))+((πln(2))/(32))  ∫_0 ^(π/4) ln(1+tg(t))dt=B  =∫_0 ^(π/4) ln((2/(1+tg(t))))=B  ⇔B=(π/8)ln(2)  A=((ln(2))/3).(π^3 /(64))  ∫_0 ^(π/4) t^2 ln(1+tan(t))dt=(1/2)(((ln(2))/3).(π^3 /(64))−(π^2 /(16))(((πln(2))/8))−2π(((16πC−21ζ(3)−4π^2 ln(2))/(128)))+(π^2 /2).((ln(2))/(32)))=Ω  ∫_0 ^(1() ((tan^− (x))^3 )/(1+x))dx=((π^3 ln(2))/(64))−3Ω

π364ln(2)301ln(1+x)1+x2tan1(x)2dx=30π4ln(1+tg(t))t2dtt0π4ln(1+tg(t))t2dt=0π4ln(1+tg(π4t))(π4t)220π4ln(1+tg(t))t2dt=0π4ln(2)t2π2160π4ln(1+tan(t))dt+π20π4tln(1+tg(t))dt=Aπ216B+π2CA=ln(2)3(π364)C=0π4ln(2sin(π4+x)cos(x))tdt=20π4ln(cos(t))tdt=Y+ln(2)2.π4Y=20π4k1(1)kcos(2kx)kxdx+20π4ln(2)tdt=2k1(1)kk[π8ksin(kπ2)+cos(kπ2)14k2]+ln(2)π216=2k0(1)kπ8(2k+1)212k1(1)kk3+12k1(1)k8k3+ln(2)π2162(π8C21128ζ(3)π232ln(2))=2(16πC21ζ(3)4π2ln(2)128)+πln(2)320π4ln(1+tg(t))dt=B=0π4ln(21+tg(t))=BB=π8ln(2)A=ln(2)3.π3640π4t2ln(1+tan(t))dt=12(ln(2)3.π364π216(πln(2)8)2π(16πC21ζ(3)4π2ln(2)128)+π22.ln(2)32)=Ω01(tan(x))31+xdx=π3ln(2)643Ω

Commented by MathSh last updated on 21/Oct/21

Perfect dear Ser, thank you so much

PerfectdearSer,thankyousomuch

Terms of Service

Privacy Policy

Contact: info@tinkutara.com