Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 157223 by amin96 last updated on 21/Oct/21

Answered by Rasheed.Sindhi last updated on 21/Oct/21

((x^2 +y^2 )/(x^2 −y^2 ))+((x^2 −y^2 )/(x^2 +y^2 ))=k;((x^8 +y^8 )/(x^8 −y^8 ))+((x^8 −y^8 )/(x^8 +y^8 ))=?_(−)   (((x^2 +y^2 )^2 +(x^2 −y^2 )^2 )/((x^2 +y^2 )(x^2 −y^2 )))=k  ((2(x^4 +y^4 ))/(x^4 −y^4 ))=k  ((x^4 +y^4 )/(x^4 −y^4 ))=(k/2)  ((x^4 +y^4 )/(x^4 −y^4 ))+((x^4 −y^4 )/(x^4 +y^4 ))=(k/2)+(2/k)  (((x^4 +y^4 )^2 +(x^4 −y^4 )^2 )/((x^4 +y^4 )(x^4 −y^4 )))=((k^2 +4)/(2k))  ((2(x^8 +y^8 ))/(x^8 −y^8 ))=((k^2 +4)/(2k))  ((x^8 +y^8 )/(x^8 −y^8 ))=((k^2 +4)/(4k))  ((x^8 +y^8 )/(x^8 −y^8 ))+((x^8 −y^8 )/(x^8 +y^8 ))=((k^2 +4)/(4k))+((4k)/(k^2 +4))          =(((k^2 +4)^2 +(4k)^2 )/(2k(k^2 +4)))=((k^4 +8k^2 +16+16k^2 )/(4k(k^2 +4)))       =((k^4 +24k^2 +16)/(4k(k^2 +4)))

x2+y2x2y2+x2y2x2+y2=k;x8+y8x8y8+x8y8x8+y8=?(x2+y2)2+(x2y2)2(x2+y2)(x2y2)=k2(x4+y4)x4y4=kx4+y4x4y4=k2x4+y4x4y4+x4y4x4+y4=k2+2k(x4+y4)2+(x4y4)2(x4+y4)(x4y4)=k2+42k2(x8+y8)x8y8=k2+42kx8+y8x8y8=k2+44kx8+y8x8y8+x8y8x8+y8=k2+44k+4kk2+4=(k2+4)2+(4k)22k(k2+4)=k4+8k2+16+16k24k(k2+4)=k4+24k2+164k(k2+4)

Answered by som(math1967) last updated on 21/Oct/21

(((x^2 +y^2 )^2 +(x^2 −y^2 )^2 )/((x^2 −y^2 )(x^2 +y^2 )))=k  ⇒((x^4 +y^4 )/(x^4 −y^4 ))=(k/2)  ⇒((x^4 +y^4 +x^4 −y^4 )/(x^4 +y^4 −x^4 +y^4 ))=((k+2)/(k−2))★  ⇒(x^8 /y^8 )=(((k+2)/(k−2)))^2   ⇒((x^8 +y^8 )/(x^8 −y^8 ))=((2(k^2 +4))/(8k)) ★  ∴((x^8 +y^8 )/(x^8 −y^8 )) + ((x^8 −y^8 )/(x^8 +y^8 ))=((k^2 +4)/(4k))+((4k)/(k^2 +4))      =((k^4 +24k^2 +16)/(4k(k^2 +4)))  ★if (a/b)=(c/d) then ((a+b)/(a−b))=((c+d)/(c−d))  componendo and dividendo

(x2+y2)2+(x2y2)2(x2y2)(x2+y2)=kx4+y4x4y4=k2x4+y4+x4y4x4+y4x4+y4=k+2k2x8y8=(k+2k2)2x8+y8x8y8=2(k2+4)8kx8+y8x8y8+x8y8x8+y8=k2+44k+4kk2+4=k4+24k2+164k(k2+4)ifab=cdthena+bab=c+dcdcomponendoanddividendo

Terms of Service

Privacy Policy

Contact: info@tinkutara.com