All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 157268 by gsk2684 last updated on 21/Oct/21
provethat∫x2(xsinx+cosx)2dx=−xsecxxsinx+cosx+tanx+c
Answered by Ar Brandon last updated on 18/Nov/21
I=∫x2(xsinx+cosx)2dx=∫xcosx(xsinx+cosx)2⋅xcosxdx{u(x)=xcosxv′(x)=xcosx(xsinx+cosx)2⇒{u′(x)=cosx+xsinxcos2xv(x)=−1xsinx+cosxI=−x(xsinx+cosx)cosx+∫dxcos2x=−xsecxxsinx+cosx+tanx+constant
Commented by gsk2684 last updated on 21/Oct/21
thankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com