Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 157278 by mnjuly1970 last updated on 21/Oct/21

Answered by mindispower last updated on 21/Oct/21

tanh^− (x)=Σ_(m≥0) (x^(2m+1) /(2m+1))  ∫_0 ^1 ((ln(1−(√x))tanh^− ((√x)))/x)dx  =∫_0 ^1 ((ln(1−(√x)))/( (√x)))tanh^− ((√x)).2d(√x)  =∫_0 ^1 ((ln(1−y))/y)tanh^− (y)dy  =2∫_0 ^1 Σ_(m≥0) (1/(2m+1))ln(1−y)y^(2m) dy  =Σ_(m≥0) (2/(2m+1))∫_0 ^1 ln(1−y)y^(2m) dy  =Σ_(m≥0) (2/(2m+1))∂_a ∫_0 ^1 (1−y)^a y^(2m) dy∣_(a=0)   =Σ(2/(2m+1))∂_a β(2m+1,1+a)∣_(a=0)   =Σ_(m≥0) (2/(2m+1))β(2m+1,1)(Ψ(1)−Ψ(2+2m))  =Σ_(m≥1) (2/(2m+1)).(1/(2m+1))(−H_(2m+1) )  =Σ_(m≥0) ((−2H_(2m+1) )/((2m+1)^2 ))

$${tanh}^{−} \left({x}\right)=\underset{{m}\geqslant\mathrm{0}} {\sum}\frac{{x}^{\mathrm{2}{m}+\mathrm{1}} }{\mathrm{2}{m}+\mathrm{1}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−\sqrt{{x}}\right){tanh}^{−} \left(\sqrt{{x}}\right)}{{x}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−\sqrt{{x}}\right)}{\:\sqrt{{x}}}{tanh}^{−} \left(\sqrt{{x}}\right).\mathrm{2}{d}\sqrt{{x}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{y}\right)}{{y}}\mathrm{tan}{h}^{−} \left({y}\right){dy} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{m}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\mathrm{2}{m}+\mathrm{1}}{ln}\left(\mathrm{1}−{y}\right){y}^{\mathrm{2}{m}} {dy} \\ $$$$=\underset{{m}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{2}}{\mathrm{2}{m}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}−{y}\right){y}^{\mathrm{2}{m}} {dy} \\ $$$$=\underset{{m}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{2}}{\mathrm{2}{m}+\mathrm{1}}\partial_{{a}} \int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{y}\right)^{{a}} {y}^{\mathrm{2}{m}} {dy}\mid_{{a}=\mathrm{0}} \\ $$$$=\Sigma\frac{\mathrm{2}}{\mathrm{2}{m}+\mathrm{1}}\partial_{{a}} \beta\left(\mathrm{2}{m}+\mathrm{1},\mathrm{1}+{a}\right)\mid_{{a}=\mathrm{0}} \\ $$$$=\underset{{m}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{2}}{\mathrm{2}{m}+\mathrm{1}}\beta\left(\mathrm{2}{m}+\mathrm{1},\mathrm{1}\right)\left(\Psi\left(\mathrm{1}\right)−\Psi\left(\mathrm{2}+\mathrm{2}{m}\right)\right) \\ $$$$=\underset{{m}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{2}}{\mathrm{2}{m}+\mathrm{1}}.\frac{\mathrm{1}}{\mathrm{2}{m}+\mathrm{1}}\left(−{H}_{\mathrm{2}{m}+\mathrm{1}} \right) \\ $$$$=\underset{{m}\geqslant\mathrm{0}} {\sum}\frac{−\mathrm{2}{H}_{\mathrm{2}{m}+\mathrm{1}} }{\left(\mathrm{2}{m}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 22/Oct/21

thank you so much sir power

$${thank}\:{you}\:{so}\:{much}\:{sir}\:{power} \\ $$

Commented by mindispower last updated on 22/Oct/21

withe Pleasur

$${withe}\:{Pleasur} \\ $$

Answered by qaz last updated on 22/Oct/21

∫_0 ^1 ((ln(1−(√x))tanh^(−1) (√x))/x)dx  =2∫_0 ^1 ((ln(1−x)tanh^(−1) x)/x)dx  =2Σ_(n=0) ^∞ (1/(2n+1))∫_0 ^1 x^(2n) ln(1−x)dx  =−2Σ_(n=0) ^∞ (H_(2n+1) /((2n+1)^2 ))  =Σ_(n=1) ^∞ ((−1)^n −1)(H_n /n^2 )  −−−−−−−−−−−−  H_n =∫_0 ^1 ((1−x^n )/(1−x))dx=−(1−x^n )ln(1−x)∣_0 ^1 −n∫_0 ^1 x^(n−1) ln(1−x)dx=−n∫_0 ^1 x^(n−1) ln(1−x)dx  ⇒H_n =−n∫_0 ^1 x^(n−1) ln(1−x)dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−\sqrt{\mathrm{x}}\right)\mathrm{tanh}^{−\mathrm{1}} \sqrt{\mathrm{x}}}{\mathrm{x}}\mathrm{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{tanh}^{−\mathrm{1}} \mathrm{x}}{\mathrm{x}}\mathrm{dx} \\ $$$$=\mathrm{2}\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{1}}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{2n}} \mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{dx} \\ $$$$=−\mathrm{2}\underset{\mathrm{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{H}_{\mathrm{2n}+\mathrm{1}} }{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\left(−\mathrm{1}\right)^{\mathrm{n}} −\mathrm{1}\right)\frac{\mathrm{H}_{\mathrm{n}} }{\mathrm{n}^{\mathrm{2}} } \\ $$$$−−−−−−−−−−−− \\ $$$$\mathrm{H}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−\mathrm{x}^{\mathrm{n}} }{\mathrm{1}−\mathrm{x}}\mathrm{dx}=−\left(\mathrm{1}−\mathrm{x}^{\mathrm{n}} \right)\mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mid_{\mathrm{0}} ^{\mathrm{1}} −\mathrm{n}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{n}−\mathrm{1}} \mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{dx}=−\mathrm{n}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{n}−\mathrm{1}} \mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{dx} \\ $$$$\Rightarrow\mathrm{H}_{\mathrm{n}} =−\mathrm{n}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{n}−\mathrm{1}} \mathrm{ln}\left(\mathrm{1}−\mathrm{x}\right)\mathrm{dx} \\ $$

Commented by mnjuly1970 last updated on 22/Oct/21

thanks alot sir qaz

$${thanks}\:{alot}\:{sir}\:{qaz} \\ $$

Answered by mnjuly1970 last updated on 22/Oct/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com