Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 157332 by cortano last updated on 22/Oct/21

Answered by Rasheed.Sindhi last updated on 22/Oct/21

6x−y=7m⇒y=6x−7m  P(x)=54x^2 +3xy−2y^2 +z+2021  =54x^2 +3x(6x−7m)−2(6x−7m)^2 +z+2021  =54x^2 +18x^2 −21mx−2(36x^2 −84mx+49m^2 )+z+2021  =54x^2 +18x^2 −21mx−72x^2 +168mx−98m^2 +z+2021  =147mx−98m^2 +z+2021  =49×3mx−49×2m^2 + 49×41+12 +z  =49(3mx−2m^2 +41)+12+z  49 ∣ p(x)  ⇒49∣(12+z)  ⇒z+12≡0(mod 49)      z≡−12+49(mod 49     z≡37(mod 49)     z=37+49k  Minimum positive of z=37+49×0      z=37

$$\mathrm{6}{x}−{y}=\mathrm{7}{m}\Rightarrow{y}=\mathrm{6}{x}−\mathrm{7}{m} \\ $$$${P}\left({x}\right)=\mathrm{54}{x}^{\mathrm{2}} +\mathrm{3}{xy}−\mathrm{2}{y}^{\mathrm{2}} +{z}+\mathrm{2021} \\ $$$$=\mathrm{54}{x}^{\mathrm{2}} +\mathrm{3}{x}\left(\mathrm{6}{x}−\mathrm{7}{m}\right)−\mathrm{2}\left(\mathrm{6}{x}−\mathrm{7}{m}\right)^{\mathrm{2}} +{z}+\mathrm{2021} \\ $$$$=\mathrm{54}{x}^{\mathrm{2}} +\mathrm{18}{x}^{\mathrm{2}} −\mathrm{21}{mx}−\mathrm{2}\left(\mathrm{36}{x}^{\mathrm{2}} −\mathrm{84}{mx}+\mathrm{49}{m}^{\mathrm{2}} \right)+{z}+\mathrm{2021} \\ $$$$=\mathrm{54}{x}^{\mathrm{2}} +\mathrm{18}{x}^{\mathrm{2}} −\mathrm{21}{mx}−\mathrm{72}{x}^{\mathrm{2}} +\mathrm{168}{mx}−\mathrm{98}{m}^{\mathrm{2}} +{z}+\mathrm{2021} \\ $$$$=\mathrm{147}{mx}−\mathrm{98}{m}^{\mathrm{2}} +{z}+\mathrm{2021} \\ $$$$=\mathrm{49}×\mathrm{3}{mx}−\mathrm{49}×\mathrm{2}{m}^{\mathrm{2}} +\:\mathrm{49}×\mathrm{41}+\mathrm{12}\:+{z} \\ $$$$=\mathrm{49}\left(\mathrm{3}{mx}−\mathrm{2}{m}^{\mathrm{2}} +\mathrm{41}\right)+\mathrm{12}+{z} \\ $$$$\mathrm{49}\:\mid\:{p}\left({x}\right) \\ $$$$\Rightarrow\mathrm{49}\mid\left(\mathrm{12}+{z}\right) \\ $$$$\Rightarrow{z}+\mathrm{12}\equiv\mathrm{0}\left({mod}\:\mathrm{49}\right) \\ $$$$\:\:\:\:{z}\equiv−\mathrm{12}+\mathrm{49}\left({mod}\:\mathrm{49}\right. \\ $$$$\:\:\:{z}\equiv\mathrm{37}\left({mod}\:\mathrm{49}\right) \\ $$$$\:\:\:{z}=\mathrm{37}+\mathrm{49}{k} \\ $$$${Minimum}\:{positive}\:{of}\:{z}=\mathrm{37}+\mathrm{49}×\mathrm{0} \\ $$$$\:\:\:\:{z}=\mathrm{37} \\ $$$$ \\ $$

Commented by cortano last updated on 22/Oct/21

thank you. it great way

$${thank}\:{you}.\:{it}\:{great}\:{way} \\ $$

Commented by mr W last updated on 22/Oct/21

i think with the conditions given in  the question there is no requested  solution possible.  here just an example which also  fulfills the conditions:  x=(1/7)  y=−((43)/7)  z=16 < 37

$${i}\:{think}\:{with}\:{the}\:{conditions}\:{given}\:{in} \\ $$$${the}\:{question}\:{there}\:{is}\:{no}\:{requested} \\ $$$${solution}\:{possible}. \\ $$$${here}\:{just}\:{an}\:{example}\:{which}\:{also} \\ $$$${fulfills}\:{the}\:{conditions}: \\ $$$${x}=\frac{\mathrm{1}}{\mathrm{7}} \\ $$$${y}=−\frac{\mathrm{43}}{\mathrm{7}} \\ $$$${z}=\mathrm{16}\:<\:\mathrm{37} \\ $$

Commented by Rasheed.Sindhi last updated on 22/Oct/21

You′re very right sir! ActuallyI assumed x   x and y positive integers. And this   I did unconsciously.Anyway  my solution  is only right for positive integers and  according to the question you′re  right.It seems that the condition of  being integer of x and y is ignored  mistakenly.

$$\mathrm{You}'\mathrm{re}\:\boldsymbol{\mathrm{very}}\:\boldsymbol{\mathrm{right}}\:\mathrm{sir}!\:\mathrm{ActuallyI}\:\mathrm{assumed}\:\mathrm{x} \\ $$$$\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{positive}\:\mathrm{integers}.\:\mathrm{And}\:\mathrm{this} \\ $$$$\:\mathrm{I}\:\mathrm{did}\:\mathrm{unconsciously}.\mathrm{Anyway}\:\:\mathrm{my}\:\mathrm{solution} \\ $$$$\mathrm{is}\:\mathrm{only}\:\mathrm{right}\:\mathrm{for}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{and} \\ $$$$\mathrm{according}\:\mathrm{to}\:\mathrm{the}\:\mathrm{question}\:\mathrm{you}'\mathrm{re} \\ $$$$\mathrm{right}.\mathrm{It}\:\mathrm{seems}\:\mathrm{that}\:\mathrm{the}\:\mathrm{condition}\:\mathrm{of} \\ $$$$\mathrm{being}\:\mathrm{integer}\:\mathrm{of}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{is}\:\mathrm{ignored} \\ $$$$\mathrm{mistakenly}. \\ $$

Commented by mr W last updated on 22/Oct/21

 i think so too. x,y should be integer.

$$\:{i}\:{think}\:{so}\:{too}.\:{x},{y}\:{should}\:{be}\:{integer}. \\ $$

Commented by Rasheed.Sindhi last updated on 22/Oct/21

Salute to your fine observation!

$$\mathrm{Salute}\:\mathrm{to}\:\mathrm{your}\:\mathrm{fine}\:\mathrm{observation}! \\ $$

Answered by ajfour last updated on 22/Oct/21

6x−y=7m    ;  m∈Z  −z=54y^2 (t^2 +(t/(18))−(1/(27)))+p  f=49N=54(x−((2y)/9))(x+(y/6))+z+p  N=((54(x−((2y)/9))(x+(y/6))+(z+p))/7)    28N  =(42m−2y)(7m+2y)                      +2(z+p)  ⇒   z is a +min  when  2(z+p)=     28N+(2y+7m)(2y−42m)     is a +min.     ⇒ 2z=−4042+28N−((63×35m^2 )/4)    z =((7(16N−315m^2 ))/8)−2021      how to obtain a positive min  out from this, i just dunnow..

$$\mathrm{6}{x}−{y}=\mathrm{7}{m}\:\:\:\:;\:\:{m}\in\mathbb{Z} \\ $$$$−{z}=\mathrm{54}{y}^{\mathrm{2}} \left({t}^{\mathrm{2}} +\frac{{t}}{\mathrm{18}}−\frac{\mathrm{1}}{\mathrm{27}}\right)+{p} \\ $$$${f}=\mathrm{49}{N}=\mathrm{54}\left({x}−\frac{\mathrm{2}{y}}{\mathrm{9}}\right)\left({x}+\frac{{y}}{\mathrm{6}}\right)+{z}+{p} \\ $$$${N}=\frac{\mathrm{54}\left({x}−\frac{\mathrm{2}{y}}{\mathrm{9}}\right)\left({x}+\frac{{y}}{\mathrm{6}}\right)+\left({z}+{p}\right)}{\mathrm{7}} \\ $$$$\:\:\mathrm{28}{N}\:\:=\left(\mathrm{42}{m}−\mathrm{2}{y}\right)\left(\mathrm{7}{m}+\mathrm{2}{y}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\mathrm{2}\left({z}+{p}\right) \\ $$$$\Rightarrow\:\:\:{z}\:{is}\:{a}\:+{min}\:\:{when}\:\:\mathrm{2}\left({z}+{p}\right)= \\ $$$$\:\:\:\mathrm{28}{N}+\left(\mathrm{2}{y}+\mathrm{7}{m}\right)\left(\mathrm{2}{y}−\mathrm{42}{m}\right) \\ $$$$\:\:\:{is}\:{a}\:+{min}.\:\:\: \\ $$$$\Rightarrow\:\mathrm{2}{z}=−\mathrm{4042}+\mathrm{28}{N}−\frac{\mathrm{63}×\mathrm{35}{m}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:{z}\:=\frac{\mathrm{7}\left(\mathrm{16}{N}−\mathrm{315}{m}^{\mathrm{2}} \right)}{\mathrm{8}}−\mathrm{2021} \\ $$$$\:\: \\ $$$${how}\:{to}\:{obtain}\:{a}\:{positive}\:{min} \\ $$$${out}\:{from}\:{this},\:{i}\:{just}\:{dunnow}.. \\ $$

Commented by cortano last updated on 22/Oct/21

thank you

$${thank}\:{you} \\ $$

Commented by mr W last updated on 22/Oct/21

ajfour sir is right. there is no unique   solution.

$${ajfour}\:{sir}\:{is}\:{right}.\:{there}\:{is}\:{no}\:{unique}\: \\ $$$${solution}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com