Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 157351 by physicstutes last updated on 22/Oct/21

Prove by mathematical induction   Σ_(r=1) ^n (1/(r(r+1))) = (n/(n+1))

Provebymathematicalinductionnr=11r(r+1)=nn+1

Commented by hknkrc46 last updated on 22/Oct/21

★ (1/(r(r + 1))) = (((r + 1) − r)/(r(r + 1)))  = ((r + 1)/(r(r + 1))) − (r/(r(r + 1)))  = (1/r) − (1/(r + 1))   ★ Σ_(r=1) ^n (1/(r(r+1))) = Σ_(r=1) ^n ((1/r) − (1/(r + 1)))  = ((1/1) − (1/2))+((1/2) − (1/3))+ ∙∙∙ +((1/n) − (1/(n + 1)))  = (1/1) − (1/(n + 1)) = (n/(n + 1))

1r(r+1)=(r+1)rr(r+1)=r+1r(r+1)rr(r+1)=1r1r+1nr=11r(r+1)=nr=1(1r1r+1)=(1112)+(1213)++(1n1n+1)=111n+1=nn+1

Answered by ajfour last updated on 22/Oct/21

S=Σ_(r=1) ^n (1/T_r )=Σ_(r=1) ^n ((1/r)−(1/(r+1)))     =Σ_(r=1) ^n (t_r −t_(r+1) )=1−(1/(n+1))  ⇒  S=(n/(n+1))

S=nr=11Tr=nr=1(1r1r+1)=nr=1(trtr+1)=11n+1S=nn+1

Answered by physicstutes last updated on 22/Oct/21

• prove for n = 1.   LHS = Σ_(r=1) ^1 (1/(r(r+1))) = (1/(1(1+1))) = (1/2)  RHS = (1/(1+1)) =(1/2)  ⇒ true for n=1.  • Assume it is true for n=k  ⇒ Σ_(r=1) ^k (1/(r(r+1))) = (k/(k+1))  • Prove for n= k+1.  Σ_(r=1) ^(k+1) (1/(r(r+1))) = Σ_(r=1) ^k (1/(r(r+1))) + (1/((k+1)(k+2)))                        = (k/(k+1))+(1/((k+1)(k+2)))                        = (1/(k+1))(k+(1/(k+2)))                        =(1/(k+1))(((k^2 +2k+1)/(k+2)))                        = (1/(k+1))((((k+1)^2 )/(k+2)))                        = ((k+1)/(k+2))  ⇒ true for n= k+1   hence true ∀ n ∈Z

proveforn=1.LHS=1r=11r(r+1)=11(1+1)=12RHS=11+1=12trueforn=1.Assumeitistrueforn=kkr=11r(r+1)=kk+1Proveforn=k+1.k+1r=11r(r+1)=kr=11r(r+1)+1(k+1)(k+2)=kk+1+1(k+1)(k+2)=1k+1(k+1k+2)=1k+1(k2+2k+1k+2)=1k+1((k+1)2k+2)=k+1k+2trueforn=k+1hencetruenZ

Answered by som(math1967) last updated on 22/Oct/21

To prove   (1/(1×2)) +(1/(2×3)) +(1/(3×4)) +...+(1/(n(n+1)))=(n/(n+1))  p(1) L.H.S=(1/(1×2))=(1/2)  R.H.S=(1/(1+1))=(1/2)  ∴true for p(1)  let true for p(m)  ∴ (1/(1×2)) +(1/(2×3)) +...+(1/(m(m+1)))=(m/(m+1))  now p(m+1)  =(1/(1×2)) +(1/(2×3)) +...+(1/(m(m+1))) +(1/((m+1)(m+2)))  =(m/(m+1)) +(1/((m+1)(m+2))) ★  =((m(m+2)+1)/((m+1)(m+2)))  =(((m+1)^2 )/((m+1)(m+2)))=((m+1)/(m+2))  ∴true for p(m+1)  ∴Σ^n _(r=1)  (1/(r(r+1))) =(n/(n+1))  ★ (1/(1×2))+(1/(2×3)) +...+(1/(m(m+1)))=(m/(m+1))

Toprove11×2+12×3+13×4+...+1n(n+1)=nn+1p(1)L.H.S=11×2=12R.H.S=11+1=12trueforp(1)lettrueforp(m)11×2+12×3+...+1m(m+1)=mm+1nowp(m+1)=11×2+12×3+...+1m(m+1)+1(m+1)(m+2)=mm+1+1(m+1)(m+2)=m(m+2)+1(m+1)(m+2)=(m+1)2(m+1)(m+2)=m+1m+2trueforp(m+1)nr=11r(r+1)=nn+111×2+12×3+...+1m(m+1)=mm+1

Commented by peter frank last updated on 22/Oct/21

great

great

Terms of Service

Privacy Policy

Contact: info@tinkutara.com