Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 15736 by ajfour last updated on 13/Jun/17

From a point A on the circum-  ference of a circle of radius r, a  perpendicular AF  is dropped on  a tangent to the circle at P.  Find the  maximum possible   area of ΔAPF .

$${From}\:{a}\:{point}\:{A}\:{on}\:{the}\:{circum}- \\ $$$${ference}\:{of}\:{a}\:{circle}\:{of}\:{radius}\:\boldsymbol{{r}},\:{a} \\ $$$${perpendicular}\:{AF}\:\:{is}\:{dropped}\:{on} \\ $$$${a}\:{tangent}\:{to}\:{the}\:{circle}\:{at}\:{P}. \\ $$$${Find}\:{the}\:\:{maximum}\:{possible}\: \\ $$$${area}\:{of}\:\Delta{APF}\:. \\ $$

Answered by mrW1 last updated on 13/Jun/17

let θ=∠AOP  O=center of circle  PF=rsin θ  AF=r−rcos θ  A_(ΔAPF) =(1/2)×rsin θ×(r−rcos θ)=(r^2 /2)sin θ(1−cos θ)  =(r^2 /2)f(θ)  with f(θ)=sin θ(1−cos θ)  (df/dθ)=cos θ(1−cos θ)+sin^2  θ=cos θ−2cos^2  θ+1=0  cos θ=((1±(√(1+8)))/4)=((1±3)/4)=1,−(1/2)  ⇒θ=0° (not what we need)  ⇒θ=120°  max.A_(ΔAPF) =(r^2 /2)×sin 120×(1−cos 120)  =(r^2 /2)×((√3)/2)×(1+(1/2))  =((3(√3)r^2 )/8)

$$\mathrm{let}\:\theta=\angle\mathrm{AOP} \\ $$$$\mathrm{O}=\mathrm{center}\:\mathrm{of}\:\mathrm{circle} \\ $$$$\mathrm{PF}=\mathrm{rsin}\:\theta \\ $$$$\mathrm{AF}=\mathrm{r}−\mathrm{rcos}\:\theta \\ $$$$\mathrm{A}_{\Delta\mathrm{APF}} =\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{rsin}\:\theta×\left(\mathrm{r}−\mathrm{rcos}\:\theta\right)=\frac{\mathrm{r}^{\mathrm{2}} }{\mathrm{2}}\mathrm{sin}\:\theta\left(\mathrm{1}−\mathrm{cos}\:\theta\right) \\ $$$$=\frac{\mathrm{r}^{\mathrm{2}} }{\mathrm{2}}\mathrm{f}\left(\theta\right) \\ $$$$\mathrm{with}\:\mathrm{f}\left(\theta\right)=\mathrm{sin}\:\theta\left(\mathrm{1}−\mathrm{cos}\:\theta\right) \\ $$$$\frac{\mathrm{df}}{\mathrm{d}\theta}=\mathrm{cos}\:\theta\left(\mathrm{1}−\mathrm{cos}\:\theta\right)+\mathrm{sin}^{\mathrm{2}} \:\theta=\mathrm{cos}\:\theta−\mathrm{2cos}^{\mathrm{2}} \:\theta+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{cos}\:\theta=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{8}}}{\mathrm{4}}=\frac{\mathrm{1}\pm\mathrm{3}}{\mathrm{4}}=\mathrm{1},−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\theta=\mathrm{0}°\:\left(\mathrm{not}\:\mathrm{what}\:\mathrm{we}\:\mathrm{need}\right) \\ $$$$\Rightarrow\theta=\mathrm{120}° \\ $$$$\mathrm{max}.\mathrm{A}_{\Delta\mathrm{APF}} =\frac{\mathrm{r}^{\mathrm{2}} }{\mathrm{2}}×\mathrm{sin}\:\mathrm{120}×\left(\mathrm{1}−\mathrm{cos}\:\mathrm{120}\right) \\ $$$$=\frac{\mathrm{r}^{\mathrm{2}} }{\mathrm{2}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}×\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{3}\sqrt{\mathrm{3}}\mathrm{r}^{\mathrm{2}} }{\mathrm{8}} \\ $$

Commented by mrW1 last updated on 13/Jun/17

Commented by ajfour last updated on 13/Jun/17

great sir, is there also a way  of geometry to arrive at the  result without having to  differentiate..

$${great}\:{sir},\:{is}\:{there}\:{also}\:{a}\:{way} \\ $$$${of}\:{geometry}\:{to}\:{arrive}\:{at}\:{the} \\ $$$${result}\:{without}\:{having}\:{to} \\ $$$${differentiate}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com