Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 157412 by cortano last updated on 23/Oct/21

 ∫_( 0) ^( (π/2))  (x/(sin^8 x+cos^8 x)) dx ?

0π2xsin8x+cos8xdx?

Answered by phanphuoc last updated on 23/Oct/21

∫_0 ^(π/2) ((π/2−x)/(sin^8 (π/2−x)+cos^8 (π/2−x)))dx=  =∫_0 ^(π/2) ((π/2−x)/(sin^8 x+cos^8 x))dx  →i=π/4∫_0 ^(π/2) ((d(tanx))/(tan^8 x+1))  =π/4∫_0 ^∞ (dt/(t^8 +1))=π/4.(π/8sin(π/8)=π^2 /32sin(π/8)

0π/2π/2xsin8(π/2x)+cos8(π/2x)dx==0π/2π/2xsin8x+cos8xdxi=π/40π/2d(tanx)tan8x+1=π/40dtt8+1=π/4.(π/8sin(π/8)=π2/32sin(π/8)

Commented by cortano last updated on 23/Oct/21

the result is (π^2 /(8(√2)))((√(2+(√2))) +3(√(2−(√2))) )

theresultisπ282(2+2+322)

Answered by phanphuoc last updated on 23/Oct/21

update  −∫_0 ^∞ dx/(x^n +1)=(π/n)sin(π/n)  you can watchs yputube

update0dx/(xn+1)=πnsinπnyoucanwatchsyputube

Terms of Service

Privacy Policy

Contact: info@tinkutara.com