Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 157416 by cortano last updated on 23/Oct/21

 If 2x^2 +11x+5 is a factor of   ax^3 −17x^2 +bx−15 , then what  is a and b ?

If2x2+11x+5isafactorofax317x2+bx15,thenwhatisaandb?

Commented by Rasheed.Sindhi last updated on 23/Oct/21

ax^3 −17x^2 +bx−15 has afactor  2x^2 +11x+5;  a=?,b=?                             _(−)   Other factor=(a/2)x+((−15)/5)=(a/2)x−3   ▶(2x^2 +11x+5)((a/2)x−3)            =ax^3 −17x^2 +bx−15  ▶ax^3 +((11a)/2)x^2 +((5a)/2)x−6x^2 −33x−15            =ax^3 −17x^2 +bx−15  ▶ax^3 +(((11a)/2)−6)x^2 +(((5a)/2)−33)x−15            =ax^3 −17x^2 +bx−15  Comparing coefficients:  ((11a)/2)−6=−17⇒a=((−22)/(11))=−2  ((5a)/2)−33=b⇒b=((5(−2)−66)/2)=−38

ax317x2+bx15hasafactor2x2+11x+5;a=?,b=?Otherfactor=a2x+155=a2x3(2x2+11x+5)(a2x3)=ax317x2+bx15ax3+11a2x2+5a2x6x233x15=ax317x2+bx15ax3+(11a26)x2+(5a233)x15=ax317x2+bx15Comparingcoefficients:11a26=17a=2211=25a233=bb=5(2)662=38

Commented by Tawa11 last updated on 23/Oct/21

Weldone sir

Weldonesir

Commented by Rasheed.Sindhi last updated on 23/Oct/21

Thanks miss!  I like your encouraging!

Thanksmiss!Ilikeyourencouraging!

Answered by Rasheed.Sindhi last updated on 23/Oct/21

2x^2 +11x+5  is factor of  ax^3 −17x^2 +bx−15;  a=?,b=?_(−)   Let the other factor is cx+d  ▶(2x^2 +11x+5)(cx+d)            =ax^3 −17x^2 +bx−15  ▶2cx^3 +(11c+2d)x^2 +(5c+11d)x+5d            =ax^3 −17x^2 +bx−15  Comparing coefficients:  ▶2c=a_((i))  , 11c+2d_(           (ii)  ) =−17,        5c+11d=b_((iii))  , 5d=−15_((iv))   ▶(iv)⇒d=((−15)/5)=−3,      (ii)⇒11c+2(−3)=−17⇒c=−1       (i)⇒a=2(−1)=−2      (iii)⇒b=5(−1)+11(−3)=−38

2x2+11x+5isfactorofax317x2+bx15;a=?,b=?Lettheotherfactoriscx+d(2x2+11x+5)(cx+d)=ax317x2+bx152cx3+(11c+2d)x2+(5c+11d)x+5d=ax317x2+bx15Comparingcoefficients:2c=a(i),11c+2d=17(ii),5c+11d=b(iii),5d=15(iv)(iv)d=155=3,(ii)11c+2(3)=17c=1(i)a=2(1)=2(iii)b=5(1)+11(3)=38

Commented by cortano last updated on 23/Oct/21

yes sir. i got the same result

yessir.igotthesameresult

Commented by cortano last updated on 23/Oct/21

Answered by Rasheed.Sindhi last updated on 23/Oct/21

P(x)=ax^3 −17x^2 +bx−15  D(x)=2x^2 +11x+5 ; a=?,b=?          _(−)   ▶Two roots of P(x)=0 are also roots  of D(x):            2x^2 +11x+5=0           (x+5)(2x+1)=0            x=−5 ∣ x=−(1/2)  ▶Let third root is α  P(x)=ax^3 −17x^2 +bx−15                =(x+5)(x+(1/2))(x−α)   ▶This is an identity so it′s correct  for every value of x:   ⧫   x=−5       (LHS=0 for x=−5)  a(−5)^3 −17(−5)^2 +b(−5)−15=0  −125a−425−5b−15=0        25a+85+b+3=0       25a+b=−88.................(i)  ⧫   x=−1/2    (LHS=0 for x=−1/2)   a(−(1/2))^3 −17(−(1/2))^2 +b(−(1/2))−15=0    −(1/8)a−((17)/4)−(1/2)b−15=0        a+34+4b+120=0       a+4b=−154..................(ii)  ▶4(i)−(ii)⇒99a=−352+154=−198                   a=−2  b=−88−25a=−88−25(−2)=−38                         b=−38

P(x)=ax317x2+bx15D(x)=2x2+11x+5;a=?,b=?TworootsofP(x)=0arealsorootsofD(x):2x2+11x+5=0(x+5)(2x+1)=0x=5x=12LetthirdrootisαP(x)=ax317x2+bx15=(x+5)(x+12)(xα)Thisisanidentitysoitscorrectforeveryvalueofx:x=5(LHS=0forx=5)a(5)317(5)2+b(5)15=0125a4255b15=025a+85+b+3=025a+b=88.................(i)x=1/2(LHS=0forx=1/2)a(12)317(12)2+b(12)15=018a17412b15=0a+34+4b+120=0a+4b=154..................(ii)4(i)(ii)99a=352+154=198a=2b=8825a=8825(2)=38b=38

Answered by ajfour last updated on 23/Oct/21

2ax^3 +11ax^2 +5ax            +2px^2 +11px+5p  =2ax^3 −34x^2 +2bx−30  ⇒  11a+2p=−34          5a+11p=2b          5p=−30  so   11a=−22  ⇒  a=−2          2b=−66−10 ⇒  b=−38    (.^�   .^� _(-_(∣  ∣) ) ^(⌢) )    (._( (√))   ._( (√))  )∫

2ax3+11ax2+5ax+2px2+11px+5p=2ax334x2+2bx3011a+2p=345a+11p=2b5p=30so11a=22a=22b=6610b=38(.^.^)(..)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com