All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 157442 by bobhans last updated on 23/Oct/21
∫dxx−x2+2x+2
Answered by MJS_new last updated on 23/Oct/21
∫dxx−x2+2x+2=[t=x+1+x2+2x+2→dx=x2+2x+2x+1+x2+2x+2dt]=−12∫t2+1t(t+1)dt=∫(1t+1−12t−12)dt==ln(t+1)−12lnt−12t==12(ln(t+1)2t−t)==12(ln(1+x2+2x+2)−x−x2+2x+2)+C
Answered by cortano last updated on 23/Oct/21
1x−x2+2x+2=x+x2+2x+2−2x−2I=−∫x2x+2dx−∫x2+2x+22x+2dxI1=−12∫x+1−1x+1dx=−12x+ln∣x+1∣+c1I2=−12∫(x+1)2+1x+1dxx+1=tanuI2=−12∫secutanusec2duI2=−12∫cscxsec2xdxIBP⇒{u=cscx⇒du=−cscxcotxdxv=tanxI2=−12{cscxtanx+∫cscxdx}I2=−12cscxtanx−12ln∣cscx−cotx∣+c2I=I1+I2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com