Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 157454 by tounghoungko last updated on 23/Oct/21

 Given 1+(3/y)+(5/y^2 )+(7/y^3 )+(9/y^4 )+...= 71   then 1+(4/y)+(9/y^2 )+((16)/y^3 )+((25)/y^4 )+... =?

Given1+3y+5y2+7y3+9y4+...=71then1+4y+9y2+16y3+25y4+...=?

Answered by FongXD last updated on 23/Oct/21

let 1+(3/y)+(5/y^2 )+(7/y^3 )+(9/y^4 )+...=71 be equation (1)  and 1+(4/y)+(9/y^2 )+((16)/y^3 )+((25)/y^4 )+...=M be equation (2)  take (2)−(1): (1+(4/y)+(9/y^2 )+((16)/y^3 )+((25)/y^4 )+...)−(1+(3/y)+(5/y^2 )+(7/y^3 )+(9/y^4 )+...)=M−71  ⇔ M−71=(1/y)+(4/y^2 )+(9/y^3 )+((16)/y^4 )+((25)/y^5 )+...  ⇔ M−71=(M/y), ⇒ M=((71y)/(y−1))  we have (1): 1+(3/y)+(5/y^2 )+(7/y^3 )+(9/y^4 )+...=71  ⇔ (1+(1/y)+(1/y^2 )+...)+2((1/y)+(1/y^2 )+(1/y^3 )+...)+2((1/y^2 )+(1/y^3 )+(1/y^4 )+...)+...=71  ⇔ (1/(1−(1/y)))+((2∙(1/y))/(1−(1/y)))+((2∙(1/y^2 ))/(1−(1/y)))+((2∙(1/y^3 ))/(1−(1/y)))+...=71  ⇔ −1+2(1+(1/y)+(1/y^2 )+(1/y^3 )+...)=71(1−(1/y))  ⇔ −1+(2/(1−(1/y)))=71(1−(1/y))  ⇔ 71(1−(1/y))^2 +(1+(1/y))−2=0  ⇔ 1−(1/y)=((−1+(√(569)))/(142)), [∵ 0<(1/y)<1]  ⇒ y=((142)/(143−(√(569))))  we get: M=((71(((142)/(143−(√(569))))))/(((142)/(143−(√(569))))−1))=((71×142)/(142−(143−(√(569)))))=((10082)/( (√(569))−1))  ⇒ 1+(4/y)+(9/y^2 )+((16)/y^3 )+((25)/y^4 )+...=((5041((√(569))+1))/(284))

let1+3y+5y2+7y3+9y4+...=71beequation(1)and1+4y+9y2+16y3+25y4+...=Mbeequation(2)take(2)(1):(1+4y+9y2+16y3+25y4+...)(1+3y+5y2+7y3+9y4+...)=M71M71=1y+4y2+9y3+16y4+25y5+...M71=My,M=71yy1wehave(1):1+3y+5y2+7y3+9y4+...=71(1+1y+1y2+...)+2(1y+1y2+1y3+...)+2(1y2+1y3+1y4+...)+...=71111y+21y11y+21y211y+21y311y+...=711+2(1+1y+1y2+1y3+...)=71(11y)1+211y=71(11y)71(11y)2+(1+1y)2=011y=1+569142,[0<1y<1]y=142143569weget:M=71(142143569)1421435691=71×142142(143569)=1008256911+4y+9y2+16y3+25y4+...=5041(569+1)284

Commented by Tawa11 last updated on 23/Oct/21

Great sir

Greatsir

Commented by FongXD last updated on 23/Oct/21

Thanks, sir

Thanks,sir

Answered by qaz last updated on 23/Oct/21

Σ_(n=0) ^∞ ((2n+1)/y^n )        ,(∣(1/y)∣<1)  =(2xD+1)∣_(x=1/y) (1/(1−x))  =[((1+x)/((1−x)^2 ))]_(x=1/y)   =((y(1+y))/((1−y)^2 ))=71  ⇒(1/y)=((140)/(143+(√(569))))  Σ_(n=0) ^∞ (((n+1)^2 )/y^n )  =(x^2 D^2 +3xD+1)∣_(x=1/y) (1/(1−x))  =[((2x^2 )/((1−x)^3 ))+((3x)/((1−x)^2 ))+(1/(1−x))]_(x=1/y)   =[((2x^2 )/((1−x)^3 ))+(x/((1−x)^2 ))+((1+x)/((1−x)^2 ))]_(x=1/y)   =[((x^2 +x)/((1−x)^3 ))]_(x=1/y) +71  =71[(x/(1−x))]_(x=1/y) +71  =((71)/4)((√(569))+1)

n=02n+1yn,(1y∣<1)=(2xD+1)x=1/y11x=[1+x(1x)2]x=1/y=y(1+y)(1y)2=711y=140143+569n=0(n+1)2yn=(x2D2+3xD+1)x=1/y11x=[2x2(1x)3+3x(1x)2+11x]x=1/y=[2x2(1x)3+x(1x)2+1+x(1x)2]x=1/y=[x2+x(1x)3]x=1/y+71=71[x1x]x=1/y+71=714(569+1)

Commented by tounghoungko last updated on 24/Oct/21

thx

thx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com