Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 157456 by tounghoungko last updated on 23/Oct/21

 ∫ 5^(3−2x)  dx =?

532xdx=?

Answered by FelipeLz last updated on 24/Oct/21

∫5^(3−2x) dx = 5^3 ∫5^(−2x) dx  −2x = u  dx = −(1/2)du  −(5^3 /2)∫5^u du = −(5^3 /2)((5^u /(ln 5)))+c = −(5^(3−2x) /(2ln 5))+c

532xdx=5352xdx2x=udx=12du5325udu=532(5uln5)+c=532x2ln5+c

Answered by mahdipoor last updated on 23/Oct/21

=∫e^((3−2x)ln5) dx=∫−(1/(2ln5))e^((3−2x)ln5) (−2ln5)dx=  −(1/(2ln5))∫e^((3−2x)ln5) ((3−2x)ln5)′dx=  −(1/(2ln5))∫e^u du=−(e^u /(2ln5))=−(e^((3−2x)ln5) /(2ln5))=−(5^(3−2x) /(2ln5))

=e(32x)ln5dx=12ln5e(32x)ln5(2ln5)dx=12ln5e(32x)ln5((32x)ln5)dx=12ln5eudu=eu2ln5=e(32x)ln52ln5=532x2ln5

Commented by tounghoungko last updated on 24/Oct/21

thx

thx

Answered by mevaa last updated on 23/Oct/21

=∫e^((3−2x)ln 5) dx  =∫e^(3ln 5−2xln 5) dx  =∫e^(3ln 5) ×e^(−2xln 5) dx  =e^(3ln 5) ∫e^(−2xln 5) dx  =−e^(3ln 5) /2ln 5∫−2ln 5e^(−2xln 5) dx  =−e^(3ln 5) /2ln 5(e^(−2ln 5) )+constante

=e(32x)ln5dx=e3ln52xln5dx=e3ln5×e2xln5dx=e3ln5e2xln5dx=e3ln5/2ln52ln5e2xln5dx=e3ln5/2ln5(e2ln5)+constante

Answered by physicstutes last updated on 24/Oct/21

Let 5^(3−2x)  = e^y   ⇒ y = (3−2x) ln 5  ⇒ dy = −2 ln 5 dx   hence dx = −(dy/(2 ln5 ))  ⇒ ∫5^(3−2x) dx = −(1/(2 ln 5))∫e^y dy = −(1/(2 ln 5))(5^(3−2x) )+k

Let532x=eyy=(32x)ln5dy=2ln5dxhencedx=dy2ln5532xdx=12ln5eydy=12ln5(532x)+k

Terms of Service

Privacy Policy

Contact: info@tinkutara.com