Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 157457 by MathSh last updated on 23/Oct/21

xy^′  + y = y^2  ln x

$$\mathrm{xy}^{'} \:+\:\mathrm{y}\:=\:\mathrm{y}^{\mathrm{2}} \:\mathrm{ln}\:\mathrm{x} \\ $$$$ \\ $$

Answered by ajfour last updated on 23/Oct/21

xdy+ydx=y^2 (ln x)dx  ((xdy)/y^2 )+((ydx)/y^2 )=(ln x)dx  ((d(xy))/((xy)^2 ))=(((ln x)dx)/x^2 )  let  xy=s ;  ln x=t  ⇒  (ds/s^2 )=((tdt)/e^t )  −(1/s)+c=e^(−t) tdt = f(t)dt    I=∫e^(−t) tdt      =−te^(−t) −e^(−t)   hence    (1/(xy))=((ln x+1)/x)+c  (1/y)=ln x+cx+1

$${xdy}+{ydx}={y}^{\mathrm{2}} \left(\mathrm{ln}\:{x}\right){dx} \\ $$$$\frac{{xdy}}{{y}^{\mathrm{2}} }+\frac{{ydx}}{{y}^{\mathrm{2}} }=\left(\mathrm{ln}\:{x}\right){dx} \\ $$$$\frac{{d}\left({xy}\right)}{\left({xy}\right)^{\mathrm{2}} }=\frac{\left(\mathrm{ln}\:{x}\right){dx}}{{x}^{\mathrm{2}} } \\ $$$${let}\:\:{xy}={s}\:;\:\:\mathrm{ln}\:{x}={t} \\ $$$$\Rightarrow\:\:\frac{{ds}}{{s}^{\mathrm{2}} }=\frac{{tdt}}{{e}^{{t}} } \\ $$$$−\frac{\mathrm{1}}{{s}}+{c}={e}^{−{t}} {tdt}\:=\:{f}\left({t}\right){dt} \\ $$$$\:\:{I}=\int{e}^{−{t}} {tdt} \\ $$$$\:\:\:\:=−{te}^{−{t}} −{e}^{−{t}} \\ $$$${hence} \\ $$$$\:\:\frac{\mathrm{1}}{{xy}}=\frac{\mathrm{ln}\:{x}+\mathrm{1}}{{x}}+{c} \\ $$$$\frac{\mathrm{1}}{{y}}=\mathrm{ln}\:{x}+{cx}+\mathrm{1} \\ $$$$ \\ $$

Commented by MathSh last updated on 23/Oct/21

Thank you so much dear Ser

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{dear}\:\boldsymbol{\mathrm{Ser}} \\ $$

Answered by mnjuly1970 last updated on 23/Oct/21

   y′+(y/x)= (y^( 2) /x) ln(x)       y^(−1) =u ⇒ −y^( −2) y′=u′      −y^( −2) y′ −y^(−1) (1/x) = −(1/x) ln(x)       u′ −(u/(x )) = −((ln(x))/x)         u= e^( ∫(1/x) dx) ( ∫−((ln(x))/x) e^( −∫(1/x)dx) dx +C)            = x ( ∫−((ln(x))/x^( 2) )dx +C)          = x [ ((ln( x ))/x) − ∫(1/x^( 2) ) dx +C ]            =  ln(x) +1 + C x        y = (1/(ln(x)+1+Cx))

$$\:\:\:{y}'+\frac{{y}}{{x}}=\:\frac{{y}^{\:\mathrm{2}} }{{x}}\:{ln}\left({x}\right) \\ $$$$\:\:\:\:\:{y}^{−\mathrm{1}} ={u}\:\Rightarrow\:−{y}^{\:−\mathrm{2}} {y}'={u}' \\ $$$$\:\:\:\:−{y}^{\:−\mathrm{2}} {y}'\:−{y}^{−\mathrm{1}} \frac{\mathrm{1}}{{x}}\:=\:−\frac{\mathrm{1}}{{x}}\:{ln}\left({x}\right) \\ $$$$\:\:\:\:\:{u}'\:−\frac{{u}}{{x}\:}\:=\:−\frac{{ln}\left({x}\right)}{{x}} \\ $$$$\:\:\:\:\:\:\:{u}=\:{e}^{\:\int\frac{\mathrm{1}}{{x}}\:{dx}} \left(\:\int−\frac{{ln}\left({x}\right)}{{x}}\:{e}^{\:−\int\frac{\mathrm{1}}{{x}}{dx}} {dx}\:+{C}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:{x}\:\left(\:\int−\frac{{ln}\left({x}\right)}{{x}^{\:\mathrm{2}} }{dx}\:+{C}\right) \\ $$$$\:\:\:\:\:\:\:\:=\:{x}\:\left[\:\frac{{ln}\left(\:{x}\:\right)}{{x}}\:−\:\int\frac{\mathrm{1}}{{x}^{\:\mathrm{2}} }\:{dx}\:+{C}\:\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\:{ln}\left({x}\right)\:+\mathrm{1}\:+\:{C}\:{x} \\ $$$$\:\:\:\:\:\:{y}\:=\:\frac{\mathrm{1}}{{ln}\left({x}\right)+\mathrm{1}+{Cx}} \\ $$

Commented by MathSh last updated on 23/Oct/21

Tthank you so much dear Ser

$$\mathrm{Tthank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{dear}\:\boldsymbol{\mathrm{Ser}} \\ $$

Commented by mnjuly1970 last updated on 23/Oct/21

  you are welcome sir

$$\:\:{you}\:{are}\:{welcome}\:{sir} \\ $$

Answered by CAIMAN last updated on 23/Oct/21

Commented by MathSh last updated on 23/Oct/21

Thank you Ser

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Ser} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com