Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 15760 by Tinkutara last updated on 13/Jun/17

If sides of triangle are x^2  + x + 1,  2x + 1 and x^2  − 1, prove that greatest  angle is 120°. Also find the range of x  such that triangle exist.

$$\mathrm{If}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{triangle}\:\mathrm{are}\:{x}^{\mathrm{2}} \:+\:{x}\:+\:\mathrm{1}, \\ $$$$\mathrm{2}{x}\:+\:\mathrm{1}\:\mathrm{and}\:{x}^{\mathrm{2}} \:−\:\mathrm{1},\:\mathrm{prove}\:\mathrm{that}\:\mathrm{greatest} \\ $$$$\mathrm{angle}\:\mathrm{is}\:\mathrm{120}°.\:\mathrm{Also}\:\mathrm{find}\:\mathrm{the}\:\mathrm{range}\:\mathrm{of}\:{x} \\ $$$$\mathrm{such}\:\mathrm{that}\:\mathrm{triangle}\:\mathrm{exist}. \\ $$

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Jun/17

x^2 +x+1−(2x+1)=x^2 −x>0 if:x>0  x^2 +x+1−(x^2 −1)=x+2>0 if:x>0  so: the greatest side is: x^2 +x+1  cosA=(((x^2 −1)^2 +(2x+1)^2 −(x^2 +x+1)^2 )/(2(x^2 −1)(2x+1)))=  (x^2 −1)^2 +(2x+1)^2 −(x^2 +x+1)^2 =  (x^2 −1−x^2 −x−1)(x^2 −1+x^2 +x+1)+(2x+1)^2 =  =−x(x+2)(2x+1)+(2x+1)^2 =  =(2x+1)(2x+1−x^2 −2x)=(2x+1)(1−x^2 )  ⇒cosA=(((2x+1)(1−x^2 ))/(2(x^2 −1)(2x+1)))=((−1)/2)  ⇒∡A=120^•  .  2) x^2 +x+1<2x+1+x^2 −1⇒x>1   2a) x^2 +x+1>2x+1−x^2 +1⇒2x^2 −x−1>0  x=((1±(√(1+8)))/4)=1,((−1)/2)⇒x<((−1)/2) ∨ x>1  2b) x^2 +x+1>x^2 −1−(2x+1)⇒3x>−3  ⇒x>−1  so:  for: x>1 we have this triangle.

$${x}^{\mathrm{2}} +{x}+\mathrm{1}−\left(\mathrm{2}{x}+\mathrm{1}\right)={x}^{\mathrm{2}} −{x}>\mathrm{0}\:{if}:{x}>\mathrm{0} \\ $$$${x}^{\mathrm{2}} +{x}+\mathrm{1}−\left({x}^{\mathrm{2}} −\mathrm{1}\right)={x}+\mathrm{2}>\mathrm{0}\:{if}:{x}>\mathrm{0} \\ $$$${so}:\:{the}\:{greatest}\:{side}\:{is}:\:{x}^{\mathrm{2}} +{x}+\mathrm{1} \\ $$$${cosA}=\frac{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} −\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{2}\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{2}{x}+\mathrm{1}\right)}= \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} −\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} = \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{1}−{x}^{\mathrm{2}} −{x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} −\mathrm{1}+{x}^{\mathrm{2}} +{x}+\mathrm{1}\right)+\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} = \\ $$$$=−{x}\left({x}+\mathrm{2}\right)\left(\mathrm{2}{x}+\mathrm{1}\right)+\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} = \\ $$$$=\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\mathrm{2}{x}+\mathrm{1}−{x}^{\mathrm{2}} −\mathrm{2}{x}\right)=\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\mathrm{1}−{x}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{cosA}=\frac{\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{\mathrm{2}\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left(\mathrm{2}{x}+\mathrm{1}\right)}=\frac{−\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\measuredangle{A}=\mathrm{120}^{\bullet} \:. \\ $$$$\left.\mathrm{2}\right)\:{x}^{\mathrm{2}} +{x}+\mathrm{1}<\mathrm{2}{x}+\mathrm{1}+{x}^{\mathrm{2}} −\mathrm{1}\Rightarrow{x}>\mathrm{1} \\ $$$$\left.\:\mathrm{2}{a}\right)\:{x}^{\mathrm{2}} +{x}+\mathrm{1}>\mathrm{2}{x}+\mathrm{1}−{x}^{\mathrm{2}} +\mathrm{1}\Rightarrow\mathrm{2}{x}^{\mathrm{2}} −{x}−\mathrm{1}>\mathrm{0} \\ $$$${x}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{8}}}{\mathrm{4}}=\mathrm{1},\frac{−\mathrm{1}}{\mathrm{2}}\Rightarrow{x}<\frac{−\mathrm{1}}{\mathrm{2}}\:\vee\:{x}>\mathrm{1} \\ $$$$\left.\mathrm{2}{b}\right)\:{x}^{\mathrm{2}} +{x}+\mathrm{1}>{x}^{\mathrm{2}} −\mathrm{1}−\left(\mathrm{2}{x}+\mathrm{1}\right)\Rightarrow\mathrm{3}{x}>−\mathrm{3} \\ $$$$\Rightarrow{x}>−\mathrm{1} \\ $$$${so}:\:\:{for}:\:{x}>\mathrm{1}\:{we}\:{have}\:{this}\:{triangle}. \\ $$

Commented by Tinkutara last updated on 14/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com