Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 157630 by Oberon last updated on 25/Oct/21

Commented by ehab last updated on 25/Oct/21

$$ \\ $$

Answered by mindispower last updated on 26/Oct/21

u_0 =(√((1/2)Π)),U_1 =(√((1/2)+(1/2)U_0 )).U_2 =(√((1/2)+(1/2)U_1 ))  U_(n+1) =(√((1/2)+(1/2)U_n ))  ⇒(√2)U_(n+1) =(√(1+U_n ))  U_n =cos(q_n )⇒(√2)cos(q_(n+1) )=(√(1+cos(q_n )))=(√2)cos((q_n /2))  ⇒q_(n+1) =(q_n /2)⇒q_n =a((1/2))^n   (1/( (√2)))=cos(a)⇒a=(π/4)  ⇒U_n =cos((π/(4.2^n )))ust  we want (1/2)Π_(n≥1) .cos((π/(42^n )))  Π_(k=1) ^n cos((π/(42^k )))=((sin((π/2)))/(2^(n+1) sin((π/(42^n )))))...cos(x)=((sin(2x))/(2sin(x)))  =lim_(n→∞) .(1/(2^(n+1) sin((π/(42^n ))))).(1/2)=lim_(n→∞) .(1/(2^(n+2) .(π/(4.2^n ))))=(1/π)  just used sin(x)=x+o(x),x→0  ⇒(1/π)=(1/2)(√(1/2)).(√((1/2)+(1/2)(√(1/2)))).(√((1/2)+(1/2)(√((1/2)+(1/2)(√(1/2))))))......

$${u}_{\mathrm{0}} =\sqrt{\frac{\mathrm{1}}{\mathrm{2}}\Pi},{U}_{\mathrm{1}} =\sqrt{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{U}_{\mathrm{0}} }.{U}_{\mathrm{2}} =\sqrt{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{U}_{\mathrm{1}} } \\ $$$${U}_{{n}+\mathrm{1}} =\sqrt{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{U}_{{n}} } \\ $$$$\Rightarrow\sqrt{\mathrm{2}}{U}_{{n}+\mathrm{1}} =\sqrt{\mathrm{1}+{U}_{{n}} } \\ $$$${U}_{{n}} ={cos}\left({q}_{{n}} \right)\Rightarrow\sqrt{\mathrm{2}}{cos}\left({q}_{{n}+\mathrm{1}} \right)=\sqrt{\mathrm{1}+{cos}\left({q}_{{n}} \right)}=\sqrt{\mathrm{2}}{cos}\left(\frac{{q}_{{n}} }{\mathrm{2}}\right) \\ $$$$\Rightarrow{q}_{{n}+\mathrm{1}} =\frac{{q}_{{n}} }{\mathrm{2}}\Rightarrow{q}_{{n}} ={a}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}={cos}\left({a}\right)\Rightarrow{a}=\frac{\pi}{\mathrm{4}} \\ $$$$\Rightarrow{U}_{{n}} ={cos}\left(\frac{\pi}{\mathrm{4}.\mathrm{2}^{{n}} }\right){ust} \\ $$$${we}\:{want}\:\frac{\mathrm{1}}{\mathrm{2}}\underset{{n}\geqslant\mathrm{1}} {\prod}.{cos}\left(\frac{\pi}{\mathrm{42}^{{n}} }\right) \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}{cos}\left(\frac{\pi}{\mathrm{42}^{{k}} }\right)=\frac{{sin}\left(\frac{\pi}{\mathrm{2}}\right)}{\mathrm{2}^{{n}+\mathrm{1}} {sin}\left(\frac{\pi}{\mathrm{42}^{{n}} }\right)}...{cos}\left({x}\right)=\frac{{sin}\left(\mathrm{2}{x}\right)}{\mathrm{2}{sin}\left({x}\right)} \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}.\frac{\mathrm{1}}{\mathrm{2}^{{n}+\mathrm{1}} {sin}\left(\frac{\pi}{\mathrm{42}^{{n}} }\right)}.\frac{\mathrm{1}}{\mathrm{2}}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}.\frac{\mathrm{1}}{\mathrm{2}^{{n}+\mathrm{2}} .\frac{\pi}{\mathrm{4}.\mathrm{2}^{{n}} }}=\frac{\mathrm{1}}{\pi} \\ $$$${just}\:{used}\:{sin}\left({x}\right)={x}+{o}\left({x}\right),{x}\rightarrow\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\pi}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\mathrm{1}}{\mathrm{2}}}.\sqrt{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\mathrm{1}}{\mathrm{2}}}}.\sqrt{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\mathrm{1}}{\mathrm{2}}}}}...... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com