All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 157665 by mnjuly1970 last updated on 26/Oct/21
Answered by Raxreedoroid last updated on 26/Oct/21
I=∫01xn−1ln(1−x)dw=xn−1,w=xnnt=ln(1−x),dt=−11−xdxI=[xnln(1−x)n+1n∫xn1−xdx]01u=1−x,x=1−u,dx=−duI=[(1−u)nln(u)n−1n∫(1−u)nudu]10I=[(1−u)nln(u)n+1n∫(1−u)n−1+1udu]10I=[(1−u)nln(u)n−1n((1−u)nn+lnu)]10I=[(1−u)nnln(u)−(1−u)n−nlnun2]10I=limu→0+(1−u)nnln(u)−(1−u)n−nlnun2I=limu→0+nlnu((1−u)n−1)−(1−u)nn2I=limu→0+(lnu((1−u)n−1)n)−1n2I=−1n2φ(n)=−1n2S=−∑∞n=1(−1)nn3=∑∞n=11n3−2∑∞n=11(2n)3S=ζ(3)−2∑∞n=118n3=ζ(3)−14ζ(3)S=34ζ(3)
Answered by qaz last updated on 26/Oct/21
S=∑∞n=1(−1)nn∫01xn−1ln(1−x)dx=−∫01ln(1−x)ln(1+x)xdx=14∫01ln21−x1+xxdx−14∫01ln2(1−x2)xdx=12∫01ln2x1−x2dx−18∫01ln2x1−xdx................1−x1+x→x=12∑∞n=0∫01x2nln2xdx−18∑∞n=0∫01xnln2xdx=12∑∞n=0(−1)22!(2n+1)3−18∑∞n=0(−1)22!(n+1)3=(1−2−3)ζ(3)−14ζ(3)=58ζ(3)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com