Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 157744 by mnjuly1970 last updated on 27/Oct/21

      ∫_0 ^( 1) ((  Li_( 2)  (−x ) )/(1+ x))dx=?

$$ \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\:\mathrm{Li}_{\:\mathrm{2}} \:\left(−\mathrm{x}\:\right)\:}{\mathrm{1}+\:\mathrm{x}}\mathrm{dx}=? \\ $$$$ \\ $$$$ \\ $$

Answered by mindispower last updated on 27/Oct/21

ln(2)Li_2 (−1)+∫_0 ^1 ((ln(1+x))/x)ln(1+x)dx  ∫_0 ^1 ((ln^2 (1+x))/x)dx=∫_0 ^(ln(2)) ((t^2 e^t dt)/(e^t −1))=Ω  ∫_0 ^(ln(2)) t^2 e^(−nt) d=((t^2 e^(−nt) )/(−n))+(2/n)∫te^(−nt)   =[[−(2/n^2 )t−(2/n^3 ) −(t^2 /n)]e^(−nt) ]_0 ^(ln(2)) =−(2/n^2 )((1/2))^n −(2/n^3 )((1/2))^n −(1/n)((1/2))^n +(2/n^3 )  𝛀=∫_0 ^(ln(2)) Σ_(n≥0) t^2 e^(−nt) dt=((ln^3 (2))/3)+Σ_(n≥1) (−(2/n^2 )((1/2))^n −(2/n^3 )((1/2))^n −(1/n)((1/2))^n +(2/n^3 ))  Ω=((ln^3 (2))/3)−2Li_2 ((1/2))−2Li_3 ((1/2))+ln((1/2))+2ζ(3)  ∫_0 ^1 ((Li_2 (−x))/(1+x))dx=ln(2)Li_2 (−1)+((ln^3 (2))/3)−ln(2)−2(Li_2 ((1/2))+Li_3 ((1/2))−ζ(3))  Li_2 ((1/2)),li_2 (−1),Li_3 ((1/2)) has close form    [

$${ln}\left(\mathrm{2}\right){Li}_{\mathrm{2}} \left(−\mathrm{1}\right)+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{1}+{x}\right)}{{x}}{ln}\left(\mathrm{1}+{x}\right){dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)}{{x}}{dx}=\int_{\mathrm{0}} ^{{ln}\left(\mathrm{2}\right)} \frac{{t}^{\mathrm{2}} {e}^{{t}} {dt}}{{e}^{{t}} −\mathrm{1}}=\Omega \\ $$$$\int_{\mathrm{0}} ^{{ln}\left(\mathrm{2}\right)} {t}^{\mathrm{2}} {e}^{−{nt}} {d}=\frac{{t}^{\mathrm{2}} {e}^{−{nt}} }{−{n}}+\frac{\mathrm{2}}{{n}}\int{te}^{−{nt}} \\ $$$$=\left[\left[−\frac{\mathrm{2}}{{n}^{\mathrm{2}} }{t}−\frac{\mathrm{2}}{{n}^{\mathrm{3}} }\:−\frac{{t}^{\mathrm{2}} }{{n}}\right]{e}^{−{nt}} \right]_{\mathrm{0}} ^{{ln}\left(\mathrm{2}\right)} =−\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} −\frac{\mathrm{2}}{{n}^{\mathrm{3}} }\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} −\frac{\mathrm{1}}{\boldsymbol{{n}}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\boldsymbol{{n}}} +\frac{\mathrm{2}}{{n}^{\mathrm{3}} } \\ $$$$\boldsymbol{\Omega}=\int_{\mathrm{0}} ^{{ln}\left(\mathrm{2}\right)} \underset{{n}\geqslant\mathrm{0}} {\sum}{t}^{\mathrm{2}} {e}^{−{nt}} {dt}=\frac{{ln}^{\mathrm{3}} \left(\mathrm{2}\right)}{\mathrm{3}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\left(−\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} −\frac{\mathrm{2}}{{n}^{\mathrm{3}} }\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} −\frac{\mathrm{1}}{{n}}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} +\frac{\mathrm{2}}{{n}^{\mathrm{3}} }\right) \\ $$$$\Omega=\frac{{ln}^{\mathrm{3}} \left(\mathrm{2}\right)}{\mathrm{3}}−\mathrm{2}{Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{2}{Li}_{\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)+{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\mathrm{2}\zeta\left(\mathrm{3}\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{Li}_{\mathrm{2}} \left(−{x}\right)}{\mathrm{1}+{x}}{dx}={ln}\left(\mathrm{2}\right){Li}_{\mathrm{2}} \left(−\mathrm{1}\right)+\frac{{ln}^{\mathrm{3}} \left(\mathrm{2}\right)}{\mathrm{3}}−{ln}\left(\mathrm{2}\right)−\mathrm{2}\left({Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)+{Li}_{\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\zeta\left(\mathrm{3}\right)\right) \\ $$$${Li}_{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right),{li}_{\mathrm{2}} \left(−\mathrm{1}\right),{Li}_{\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)\:{has}\:{close}\:{form} \\ $$$$ \\ $$$$\left[\right. \\ $$

Commented by mnjuly1970 last updated on 27/Oct/21

             thanks alot sir power.....

$$\:\:\:\:\:\:\:\:\:\:\:\:\:{thanks}\:{alot}\:{sir}\:{power}..... \\ $$

Commented by mindispower last updated on 27/Oct/21

withe pleasur God bless You

$${withe}\:{pleasur}\:{God}\:{bless}\:{You} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com