Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 157795 by naka3546 last updated on 28/Oct/21

{a_n } is a  natural  number  sequence  for  n ≥ 0  that  satisfy  recurrence  relation  a_(m+n)  + a_(m−n)  −m+n = 1 + (1/2) (a_(2m)  +a_(2n) ) ,    for  ∀ m,n  nonnegative  integers .  Find  a_(2016)  .

{an}isanaturalnumbersequenceforn0thatsatisfyrecurrencerelationam+n+amnm+n=1+12(a2m+a2n),form,nnonnegativeintegers.Finda2016.

Answered by Rasheed.Sindhi last updated on 30/Oct/21

 a_(m+n)  + a_(m−n)  −m+n = 1 + (1/2) (a_(2m)  +a_(2n) )_(     A^ )   • determinant (((a_1 =3 (Given))))   • m=n:a_(2n) +a_0 =1+(1/2)(2a_(2n) )⇒a_0 =1      determinant (((a_0 =1)))  ▶n=0:2a_m −m=1+(1/2)(a_(2m) +a_0 )         1+(1/2)a_(2m) +(1/2)=2a_m −m         (1/2)a_(2m) =2a_m −m−(3/2)         a_(2m) =4a_m −2m−3        determinant ((( a_(2n) =4a_n −2n−3)))  a_(2(2n)) =4a_(2n) −2n−3=4(4a_n −2n−3)−2n−3             a_(4n) =16a_n −10n−15        determinant (((a_(4n) =16a_n −10n−15)))  Replacing n by 4n  a_(4(4n)) =16a_(4n) −10n−15  a_(16n) =16(16a_n −10n−15)−10n−15         =256a_n −170n−255  Again replacing n by 2n:  a_(16(2n)) =256a_(2n) −170(2n)−255  a_(32n) =256(4a_n −2n−3)−340n−255          =1024a_n −512n−768−340n−255    =1024a_n −852n−1023   determinant ((( determinant (((a_(32n) =1024a_n −852n−1023)))...A)))  ▶A:(m=2n):   a_(3n) +a_n −n=1+(1/2)(a_(4n) +a_(2n) )     2a_(3n) +2a_n −2n=2+a_(4n) +a_(2n)    2a_(3n) +2a_n −2n−2=4a_(2n) −4n−3+4a_n −2n−3    =4(4a_n −2n−3)−4n−3+4a_n −2n−3  =16a_n −8n−12−4n−3+4a_n −2n−3  =20a_n −14n−18  2a_(3n) =18a_n −12n−16  a_(3n) =9a_n −6n−8    determinant (((a_(3n) =9a_n −6n−8)))  Replacing n by 3n:     a_(3(3n)) =9a_(3n) −6(3n)−8  a_(9n) =9(9a_n −6n−8)−18n−8      =81a_n −72n−80   determinant ((( determinant (((a_(9n) =81a_n −72n−80)))...B)))  ▶A: { ((m→4n)),((n→3n)) :}⇒a_(7n) +a_n −7n+3n_(               =1+(1/2)(a_(8n) +a_(6n) ))   ▶  2a_(7n) +2a_n −8n=2+a_(8n) +a_(6n)   ▶2a_(7n) +2a_n −8n−2=a_(4(2n)) +a_(3(2n))   =16a_(2n) −10(2n)−15+9a_(2n) −6(2n)−8  =25a_(2n) −32n−23=25(4a_n −2n−3)−32n−23  =100a_n −50n−75−32n−23  =100a_n −82n−98  ▶2a_(7n) +2a_n −8n−2=100a_n −82n−98     2a_(7n) =98a_n −74n−96   determinant ((( determinant (((a_(7n) =49a_n −37n−48)))...C)))  ▶Replacing n by 9n in A     a_(32(9n)) =1024a_(9n) −852(9n)−1023    a_(288n) =1024(81a_n −72n−80)−7668n−1023   a_(288n)  =82944a_n −81396n−82943  Again replacing n by 7n    a_(288(7n))  =82944a_(7n) −81396(7n)−82943  a_(2016n) =82944(49a_n −37n−48)−569772n−82943   Now replacing n by 1  a_(2016n) =82944(49a_1 −37(1)−48)−569772(1)−82943  a_(2016n) =82944(49(3)−37−48)−569772−82943              =82944(62)−652715      determinant (( determinant (( determinant ((( a_(2016) =4489813)))))))

am+n+amnm+n=1+12(a2m+a2n)Aa1=3(Given)m=n:a2n+a0=1+12(2a2n)a0=1a0=1n=0:2amm=1+12(a2m+a0)1+12a2m+12=2amm12a2m=2amm32a2m=4am2m3a2n=4an2n3a2(2n)=4a2n2n3=4(4an2n3)2n3a4n=16an10n15a4n=16an10n15Replacingnby4na4(4n)=16a4n10n15a16n=16(16an10n15)10n15=256an170n255Againreplacingnby2n:a16(2n)=256a2n170(2n)255a32n=256(4an2n3)340n255=1024an512n768340n255=1024an852n1023a32n=1024an852n1023...AA:(m=2n):a3n+ann=1+12(a4n+a2n)2a3n+2an2n=2+a4n+a2n2a3n+2an2n2=4a2n4n3+4an2n3=4(4an2n3)4n3+4an2n3=16an8n124n3+4an2n3=20an14n182a3n=18an12n16a3n=9an6n8a3n=9an6n8Replacingnby3n:a3(3n)=9a3n6(3n)8a9n=9(9an6n8)18n8=81an72n80a9n=81an72n80...BA:{m4nn3na7n+an7n+3n=1+12(a8n+a6n)2a7n+2an8n=2+a8n+a6n2a7n+2an8n2=a4(2n)+a3(2n)=16a2n10(2n)15+9a2n6(2n)8=25a2n32n23=25(4an2n3)32n23=100an50n7532n23=100an82n982a7n+2an8n2=100an82n982a7n=98an74n96a7n=49an37n48...CReplacingnby9ninAa32(9n)=1024a9n852(9n)1023a288n=1024(81an72n80)7668n1023a288n=82944an81396n82943Againreplacingnby7na288(7n)=82944a7n81396(7n)82943a2016n=82944(49an37n48)569772n82943Nowreplacingnby1a2016n=82944(49a137(1)48)569772(1)82943a2016n=82944(49(3)3748)56977282943=82944(62)652715a2016=4489813

Commented by naka3546 last updated on 29/Oct/21

I′m  so  sorry, sir.  I  forgot  to  write  that   a_1  = 3 .

Imsosorry,sir.Iforgottowritethata1=3.

Commented by Rasheed.Sindhi last updated on 30/Oct/21

naka sir, the answer is complete  now.please verify it.If it′s not  correct then please check my  answer for mistakes. The approach  is certainly right.

nakasir,theansweriscompletenow.pleaseverifyit.Ifitsnotcorrectthenpleasecheckmyanswerformistakes.Theapproachiscertainlyright.

Commented by naka3546 last updated on 30/Oct/21

yes, it′s  correct,  sir.

yes,itscorrect,sir.

Commented by Rasheed.Sindhi last updated on 30/Oct/21

Thank You!

ThankYou!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com