Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 15784 by mrW1 last updated on 13/Jun/17

Commented by mrW1 last updated on 14/Jun/17

ABCD is a convex quadrilateral.   On each side of it a square is constructed.  E,F,G,H are center points of these  squares. Prove that EG=FH and  EG⊥FH.

$$\mathrm{ABCD}\:\mathrm{is}\:\mathrm{a}\:\mathrm{convex}\:\mathrm{quadrilateral}.\: \\ $$$$\mathrm{On}\:\mathrm{each}\:\mathrm{side}\:\mathrm{of}\:\mathrm{it}\:\mathrm{a}\:\mathrm{square}\:\mathrm{is}\:\mathrm{constructed}. \\ $$$$\mathrm{E},\mathrm{F},\mathrm{G},\mathrm{H}\:\mathrm{are}\:\mathrm{center}\:\mathrm{points}\:\mathrm{of}\:\mathrm{these} \\ $$$$\mathrm{squares}.\:\mathrm{Prove}\:\mathrm{that}\:\mathrm{EG}=\mathrm{FH}\:\mathrm{and} \\ $$$$\mathrm{EG}\bot\mathrm{FH}. \\ $$

Answered by ajfour last updated on 14/Jun/17

Commented by ajfour last updated on 14/Jun/17

  z_1 +z_2 =z_3 +z_4     or  z_1 −z_4 =z_3 −z_2    z_H −z_F =((iz_1 )/2)+(z_1 /2)+z_2 −(z_4 /2)+((iz_4 )/2)              =((i(z_1 +z_4 ))/2)+(((z_1 −z_4 ))/2)+z_2               =((i(z_1 +z_4 ))/2)+(((z_3 −z_2 ))/2)+z_2     z_H −z_F =((i(z_1 +z_4 ))/2)+(((z_2 +z_3 ))/2)  ....(i)   z_G −z_E =−((iz_3 )/2)+(z_3 /2)+z_4 −(z_2 /2)−((iz_2 )/2)               =−((i(z_2 +z_3 ))/2)+(((z_3 −z_2 ))/2)+z_4               =−((i(z_2 +z_3 ))/2)+(((z_1 −z_4 ))/2)+z_4               =−((i(z_2 +z_3 ))/2)+(((z_1 +z_4 ))/2) .  Now   (z_G −z_E )×i =(((z_2 +z_3 ))/2)+((i(z_1 +z_4 ))/2)                           = z_H −z_F   ⇒  ∣z_G −z_E ∣ = ∣z_H −z_F ∣    or   length  EG = length FH  and  z_H −z_F  =e^(iπ/2) (z_G −z_E )  which means line FH is at 90°   counterclockwise to EG .

$$\:\:{z}_{\mathrm{1}} +{z}_{\mathrm{2}} ={z}_{\mathrm{3}} +{z}_{\mathrm{4}} \\ $$$$\:\:{or}\:\:{z}_{\mathrm{1}} −{z}_{\mathrm{4}} ={z}_{\mathrm{3}} −{z}_{\mathrm{2}} \\ $$$$\:{z}_{{H}} −{z}_{{F}} =\frac{{iz}_{\mathrm{1}} }{\mathrm{2}}+\frac{{z}_{\mathrm{1}} }{\mathrm{2}}+{z}_{\mathrm{2}} −\frac{{z}_{\mathrm{4}} }{\mathrm{2}}+\frac{{iz}_{\mathrm{4}} }{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{i}\left({z}_{\mathrm{1}} +{z}_{\mathrm{4}} \right)}{\mathrm{2}}+\frac{\left({z}_{\mathrm{1}} −{z}_{\mathrm{4}} \right)}{\mathrm{2}}+{z}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{i}\left({z}_{\mathrm{1}} +{z}_{\mathrm{4}} \right)}{\mathrm{2}}+\frac{\left({z}_{\mathrm{3}} −{z}_{\mathrm{2}} \right)}{\mathrm{2}}+{z}_{\mathrm{2}} \\ $$$$\:\:{z}_{{H}} −{z}_{{F}} =\frac{{i}\left({z}_{\mathrm{1}} +{z}_{\mathrm{4}} \right)}{\mathrm{2}}+\frac{\left({z}_{\mathrm{2}} +{z}_{\mathrm{3}} \right)}{\mathrm{2}}\:\:....\left({i}\right) \\ $$$$\:{z}_{{G}} −{z}_{{E}} =−\frac{{iz}_{\mathrm{3}} }{\mathrm{2}}+\frac{{z}_{\mathrm{3}} }{\mathrm{2}}+{z}_{\mathrm{4}} −\frac{{z}_{\mathrm{2}} }{\mathrm{2}}−\frac{{iz}_{\mathrm{2}} }{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=−\frac{{i}\left({z}_{\mathrm{2}} +{z}_{\mathrm{3}} \right)}{\mathrm{2}}+\frac{\left({z}_{\mathrm{3}} −{z}_{\mathrm{2}} \right)}{\mathrm{2}}+{z}_{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=−\frac{{i}\left({z}_{\mathrm{2}} +{z}_{\mathrm{3}} \right)}{\mathrm{2}}+\frac{\left({z}_{\mathrm{1}} −{z}_{\mathrm{4}} \right)}{\mathrm{2}}+{z}_{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=−\frac{{i}\left({z}_{\mathrm{2}} +{z}_{\mathrm{3}} \right)}{\mathrm{2}}+\frac{\left({z}_{\mathrm{1}} +{z}_{\mathrm{4}} \right)}{\mathrm{2}}\:. \\ $$$${Now} \\ $$$$\:\left({z}_{{G}} −{z}_{{E}} \right)×{i}\:=\frac{\left({z}_{\mathrm{2}} +{z}_{\mathrm{3}} \right)}{\mathrm{2}}+\frac{{i}\left({z}_{\mathrm{1}} +{z}_{\mathrm{4}} \right)}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{z}_{{H}} −{z}_{{F}} \\ $$$$\Rightarrow\:\:\mid{z}_{{G}} −{z}_{{E}} \mid\:=\:\mid{z}_{{H}} −{z}_{{F}} \mid \\ $$$$\:\:{or}\:\:\:{length}\:\:{EG}\:=\:{length}\:{FH} \\ $$$${and}\:\:{z}_{{H}} −{z}_{{F}} \:={e}^{{i}\pi/\mathrm{2}} \left({z}_{{G}} −{z}_{{E}} \right) \\ $$$${which}\:{means}\:{line}\:{FH}\:{is}\:{at}\:\mathrm{90}° \\ $$$$\:{counterclockwise}\:{to}\:{EG}\:. \\ $$$$\:\:\:\:\:\:\:\:\:\:\: \\ $$

Commented by mrW1 last updated on 14/Jun/17

very smart! thanks!

$$\mathrm{very}\:\mathrm{smart}!\:\mathrm{thanks}! \\ $$

Commented by ajfour last updated on 14/Jun/17

good question sir, couldn′t apply  much geometry.

$${good}\:{question}\:{sir},\:{couldn}'{t}\:{apply} \\ $$$${much}\:{geometry}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com