Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 157925 by cortano last updated on 29/Oct/21

Answered by FongXD last updated on 30/Oct/21

Given: ((sinαcosα)/(sinβcosβ))=(8/5)   (1) and ((sinαcosβ)/(sinβcosα))=4   (2)  ⇔ (1)∙(2): ((sin^2 α)/(sin^2 β))=((32)/5) and (1)÷(2): ((cos^2 α)/(cos^2 β))=(2/5)  ⇔ 5−5sin^2 α=2−2sin^2 β  but 5sin^2 α=32sin^2 β  ⇔ 5−32sin^2 β=2−2sin^2 β  ⇔ 30sin^2 β=3  ⇔ sinβ^2 =(1/(10)), ⇒ cos^2 β=(√((99)/(100)))=((3(√(11)))/(10))  we get: tanα+tanβ=5tanβ=±5(√((sin^2 β)/(cos^2 β)))=±(5/( (√(3(√(11))))))

Given:sinαcosαsinβcosβ=85(1)andsinαcosβsinβcosα=4(2)(1)(2):sin2αsin2β=325and(1)÷(2):cos2αcos2β=2555sin2α=22sin2βbut5sin2α=32sin2β532sin2β=22sin2β30sin2β=3sinβ2=110,cos2β=99100=31110weget:tanα+tanβ=5tanβ=±5sin2βcos2β=±5311

Commented by cortano last updated on 30/Oct/21

cos^2 β=1−sin^2 β=1−(1/(10))=(9/(10))  cos^2 β=(9/(10)) ?

cos2β=1sin2β=1110=910cos2β=910?

Commented by FongXD last updated on 30/Oct/21

ohh yeah, my bad, thank you sir for correcting!!

ohhyeah,mybad,thankyousirforcorrecting!!

Commented by cortano last updated on 30/Oct/21

great sir

greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com