Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 157926 by mr W last updated on 29/Oct/21

if the line px+qy=r tangents the  ellipse (x^2 /a^2 )+(y^2 /b^2 )=1, then   1) prove a^2 p^2 +b^2 q^2 =r^2    2) find the coordinates of the        touching point.

ifthelinepx+qy=rtangentstheellipsex2a2+y2b2=1,then1)provea2p2+b2q2=r22)findthecoordinatesofthetouchingpoint.

Answered by mindispower last updated on 29/Oct/21

.... paramatric of elips{(acos(t),bsin(t))),t∈[0,2π[  M′(t)=(−asin(t),bcos(t))  M(t)∈ Line pacos(t)+qbsin(t)=r...(1)  M′(t) director vector and (−q,p) line director⇒  −qbcos(t)+pasin(t)=0...  (1)^2 +(2)^2  ⇔p^2 a^2 cos^2 (t)+q^2 b^2 sin^2 (t)+2paqbsin(t)cos(t)  +q^2 b^2 cos^2 (t)+p^2 a^2 sin^2 (t)−2abpqsin(t)cos(t)=r^2 +0  ⇔a^2 p^2 +b^2 q^2 =r^2    { ((−qbcos(t)+pasin(t)=0....∗sin(t)..1)),((pacos(t)+qbsin(t)=r......∗cos(t)....2)) :}  (1) sin(t)cos(t)≠0  ⇒(1)+(2) pa=rcos(t)⇒cos(t)=((pa)/r)  M=(((a^2 p)/r),((b^2 q)/r))  sin(t)=((qb)/r)  sin(t)=0⇒−qbcos(t)=0,⇒q=0  pacos(t)=r⇒cos(t)=(r/(pa))⇒∣(r/(pa))∣=1  in this case the line is x=(r/p), vertical lign  M((r/p),0)  cos(t)=0⇒p=0  sin(t)=(r/(qb))......The lign is y=(r/q)=^ +_− 1 vertical line  M(0,(r/q))

....paramatricofelips{(acos(t),bsin(t))),t[0,2π[M(t)=(asin(t),bcos(t))M(t)Linepacos(t)+qbsin(t)=r...(1)M(t)directorvectorand(q,p)linedirectorqbcos(t)+pasin(t)=0...(1)2+(2)2p2a2cos2(t)+q2b2sin2(t)+2paqbsin(t)cos(t)+q2b2cos2(t)+p2a2sin2(t)2abpqsin(t)cos(t)=r2+0a2p2+b2q2=r2{qbcos(t)+pasin(t)=0....sin(t)..1pacos(t)+qbsin(t)=r......cos(t)....2(1)sin(t)cos(t)0(1)+(2)pa=rcos(t)cos(t)=parM=(a2pr,b2qr)sin(t)=qbrsin(t)=0qbcos(t)=0,q=0pacos(t)=rcos(t)=rpa⇒∣rpa∣=1inthiscasethelineisx=rp,verticallignM(rp,0)cos(t)=0p=0sin(t)=rqb......Thelignisy=rq=+1verticallineM(0,rq)

Commented by mr W last updated on 30/Oct/21

thanks alot!

thanksalot!

Commented by mindispower last updated on 02/Nov/21

pleasur sir havea good day

pleasursirhaveagoodday

Answered by som(math1967) last updated on 30/Oct/21

px+qy=r   ⇒y=((r−px)/q)   (x^2 /a^2 ) +(y^2 /b^2 )=1  or.  (x^2 /a^2 ) +(((r−px)^2 )/(b^2 q^2 ))=1  or. x^2 b^2 q^2 +a^2 p^2 x^2 −2a^2 pxr+r^2 a^2 =a^2 b^2 q^2   or.(b^2 q^2 +a^2 p^2 )x^2  −2a^2 pxr+a^2 r^2 −a^2 b^2 q^2 =0 ...1)  px+qy=r is tangents of (x^2 /a^2 ) +(y^2 /b^2 )=1  ∴ (−2a^2 pr)^2 −4(b^2 q^2 +a^2 p^2 )(a^2 r^2 −a^2 b^2 q^2 )=0  [ for equal roots discriminant is 0]  4a^2 [a^2 p^2 r^2 −(b^2 q^2 +a^2 p^2 )(r^2 −b^2 q^2 )]=0  a^2 p^2 r^2 −b^2 q^2 r^2  +b^4 q^4 −a^2 p^2 r^2 +a^2 b^2 p^2 q^2 =0  b^2 q^2 (b^2 q^2 +a^2 p^2 −r^2 )=0  ∴ a^2 p^2 +b^2 q^2 =r^2   from equn. 1  (b^2 q^2 +a^2 p^2 )x^2  −2a^2 pxr+a^2 r^2 −a^2 b^2 q^2 =0  [(a^2 p^2 +b^2 q^2 =r^2 ]  r^2 x^2 −2a^2 pxr+a^2 (r^2 −b^2 q^2 )=0  r^2 x^2 −2.rx.a^2 p+a^4 .p^2 =0  x=((a^2 p)/r)  y=((r−px)/q)=((r−((a^2 p^2 )/r))/q)=((r^2 −a^2 p^2 )/(qr))  (((a^2 p)/r),((r^2 −a^2 p^2 )/(qr)))  (((a^2 p)/r),((b^2 q)/r))

px+qy=ry=rpxqx2a2+y2b2=1or.x2a2+(rpx)2b2q2=1or.x2b2q2+a2p2x22a2pxr+r2a2=a2b2q2or.(b2q2+a2p2)x22a2pxr+a2r2a2b2q2=0...1)px+qy=ristangentsofx2a2+y2b2=1(2a2pr)24(b2q2+a2p2)(a2r2a2b2q2)=0[forequalrootsdiscriminantis0]4a2[a2p2r2(b2q2+a2p2)(r2b2q2)]=0a2p2r2b2q2r2+b4q4a2p2r2+a2b2p2q2=0b2q2(b2q2+a2p2r2)=0a2p2+b2q2=r2fromequn.1(b2q2+a2p2)x22a2pxr+a2r2a2b2q2=0[(a2p2+b2q2=r2]r2x22a2pxr+a2(r2b2q2)=0r2x22.rx.a2p+a4.p2=0x=a2pry=rpxq=ra2p2rq=r2a2p2qr(a2pr,r2a2p2qr)(a2pr,b2qr)

Commented by mr W last updated on 30/Oct/21

thanks alot!

thanksalot!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com