All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 157952 by cortano last updated on 30/Oct/21
f(x)=x2014+2x2013+3x2012+4x2011+...+2014x+2015minf(x)=?
Answered by aleks041103 last updated on 31/Oct/21
f(x)=∑2015i=1ix2015−i=−x2016∑2015i=1(−i)x−i−1==−x2016ddx(∑2015i=1x−i)∑2015i=1x−i=1x∑2014i=0(1x)i=1x(1x)2015−11x−1==−x−2015−1x−1⇒f(x)=−x2016ddx(1−x−2015x−1)==−x20162015x−2016(x−1)−1+x−2015(x−1)2==−2015(x−1)−x2016+x(x−1)2=x2016−2016x+2015(x−1)2⇒f(x)=x2016−2016x+2015(x−1)2f′(x)=(2016x2015−2016)(x−1)2−2(x−1)(x2016−2016x+2015)(x−1)4==2016(x2015−1)(x−1)−2x2016+2.2016x−2.2015(x−1)3==2016(x2016−x2015−x+1)−2x2016+2.2016x−2.2015(x−1)3==2014x2016−2016x2015+2016x−2014(x−1)3Forextremumweneedf′=0⇒2014x2016−2016x2015+2016x−2014=0Thispolynomehasonly2realsolutions:x=+1;−1.f′(1)=limx→12014x2016−2016x2015+2016x−2014(x−1)3=L′H=limx→12016(2014x2015−2015x2014+1)3(x−1)2=L′H=20163limx→12015.2014x2013(x−1)2(x−1)==2016.2015.20146≠0⇒Thisleavesforpossibleextremaonlyx=−1Itcanbeeasilyseenthat:limx→±∞f(x)→+∞Thenf(x)canonlyhaveaminimumatx=−1.Thentheanswerwillbe:min(f)=f(−1)=(−1)2016−2016(−1)+2015(−1−1)2==1+2016+20154=1008⇒min(f)=1008
Commented by aleks041103 last updated on 31/Oct/21
Additional:Solutionstothepolynomial2014x2016−2016x2015+2016x−2014=0p(x)=2014x2016−2016x2015+2016x−2014Solution:Let′sfindtheextremumsp′=2016.2014x2015−2016.2015x2014+2016==2016(2014x2015−2015x2014+1)=2016g(x)let′sanalyzeg(x):g′(x)=2014.2015x2013(x−1)g(x)canhaveextremaonlyatx=0andx=1.g″(x)=2014.2015x2012(2014x−2013)g″(1)=2014.2015>0⇒g(1)=0isaminofg(x)g(n)(x)=2014.2015D(n−1)(x2014−x2013)==2014.2015(2014!(2015−n)!x2015−n−2013!(2014−n)!x2014−n)⇒g(n)(0)={0,n=1,2,...,2013,2016,...−2015!,n=20142014.2015!,n=2015Sincethesmallestnforwhichg(n)(0)≠0iseven,g(0)=1isamaxofg(x).Bythegraphofg(x),whichwevaugelyconstructusingtheanalysiswedidong(x),weseethatthereare2pointswhereg(x)=0−atx=1andatsomex=x1<0.Thenp′(x=1;x1)=0.p″(x)=2016.2015.2014(x2014−x2013)Thenatx1<0weseethatp″(x)>0.Thereforep(x)hasaminimumatx=x1.p″(x=1)=0p‴(x)=2016.2015.2014x2012(2014x−2013)⇒p‴(x=1)=2016.2015.2014>0⇒p(x)hasasaddlepointatx=1.Thenweconstructvaugelythegraphofp(x)andwesee,thatp(x)=0hasonly2solutions.Theycanbefoundbyinspection:p(1)=p(−1)=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com