Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 157952 by cortano last updated on 30/Oct/21

 f(x)=x^(2014) +2x^(2013) +3x^(2012) +4x^(2011) +...+2014x+2015   min f(x)=?

f(x)=x2014+2x2013+3x2012+4x2011+...+2014x+2015minf(x)=?

Answered by aleks041103 last updated on 31/Oct/21

f(x)=Σ_(i=1) ^(2015) ix^(2015−i) =−x^(2016) Σ_(i=1) ^(2015) (−i)x^(−i−1) =  =−x^(2016) (d/dx)(Σ_(i=1) ^(2015) x^(−i) )  Σ_(i=1) ^(2015) x^(−i) =(1/x)Σ_(i=0) ^(2014) ((1/x))^i =(1/x) ((((1/x))^(2015) −1)/((1/x)−1))=  =−((x^(−2015) −1)/(x−1))  ⇒f(x)=−x^(2016) (d/dx)(((1−x^(−2015) )/(x−1)))=  =−x^(2016) ((2015x^(−2016) (x−1)−1+x^(−2015) )/((x−1)^2 ))=  =−((2015(x−1)−x^(2016) +x)/((x−1)^2 ))=((x^(2016) −2016x+2015)/((x−1)^2 ))  ⇒f(x)=((x^(2016) −2016x+2015)/((x−1)^2 ))  f′(x)=(((2016x^(2015) −2016)(x−1)^2 −2(x−1)(x^(2016) −2016x+2015))/((x−1)^4 ))=  =((2016(x^(2015) −1)(x−1)−2x^(2016) +2.2016x−2.2015)/((x−1)^3 ))=  =((2016(x^(2016) −x^(2015) −x+1)−2x^(2016) +2.2016x−2.2015)/((x−1)^3 ))=  =((2014x^(2016) −2016x^(2015) +2016x−2014)/((x−1)^3 ))  For extremum we need f′=0⇒  2014x^(2016) −2016x^(2015) +2016x−2014=0  This polynome has only 2 real solutions:  x=+1;−1.  f′(1)=lim_(x→1) ((2014x^(2016) −2016x^(2015) +2016x−2014)/((x−1)^3 ))=  L′H= lim_(x→1) ((2016(2014x^(2015) −2015x^(2014) +1))/(3(x−1)^2 ))=  L′H=((2016)/3)lim_(x→1) ((2015.2014x^(2013) (x−1))/(2(x−1)))=  =((2016.2015.2014)/6)≠0  ⇒This leaves for possible extrema only x=−1  It can be easily seen that:  lim_(x→±∞)  f(x)→+∞  Then f(x) can only have a minimum  at x=−1.  Then the answer will be:  min(f)=f(−1)=(((−1)^(2016) −2016(−1)+2015)/((−1−1)^2 ))=  =((1+2016+2015)/4)=1008  ⇒min(f)=1008

f(x)=2015i=1ix2015i=x20162015i=1(i)xi1==x2016ddx(2015i=1xi)2015i=1xi=1x2014i=0(1x)i=1x(1x)201511x1==x20151x1f(x)=x2016ddx(1x2015x1)==x20162015x2016(x1)1+x2015(x1)2==2015(x1)x2016+x(x1)2=x20162016x+2015(x1)2f(x)=x20162016x+2015(x1)2f(x)=(2016x20152016)(x1)22(x1)(x20162016x+2015)(x1)4==2016(x20151)(x1)2x2016+2.2016x2.2015(x1)3==2016(x2016x2015x+1)2x2016+2.2016x2.2015(x1)3==2014x20162016x2015+2016x2014(x1)3Forextremumweneedf=02014x20162016x2015+2016x2014=0Thispolynomehasonly2realsolutions:x=+1;1.f(1)=limx12014x20162016x2015+2016x2014(x1)3=LH=limx12016(2014x20152015x2014+1)3(x1)2=LH=20163limx12015.2014x2013(x1)2(x1)==2016.2015.201460Thisleavesforpossibleextremaonlyx=1Itcanbeeasilyseenthat:limx±f(x)+Thenf(x)canonlyhaveaminimumatx=1.Thentheanswerwillbe:min(f)=f(1)=(1)20162016(1)+2015(11)2==1+2016+20154=1008min(f)=1008

Commented by aleks041103 last updated on 31/Oct/21

Additional:  Solutions to the polynomial  2014x^(2016) −2016x^(2015) +2016x−2014=0  p(x)=2014x^(2016) −2016x^(2015) +2016x−2014  Solution:  Let′s find the extremums  p′=2016.2014x^(2015) −2016.2015x^(2014) +2016=  =2016(2014x^(2015) −2015x^(2014) +1)=2016g(x)    let′s analyze g(x):  g′(x)=2014.2015x^(2013) (x−1)  g(x) can have extrema only at x=0 and  x=1.  g′′(x)=2014.2015x^(2012) (2014x−2013)  g′′(1)=2014.2015>0  ⇒g(1)=0 is a min of g(x)  g^((n)) (x)=2014.2015D^((n−1)) (x^(2014) −x^(2013) )=  =2014.2015(((2014!)/((2015−n)!))x^(2015−n) −((2013!)/((2014−n)!))x^(2014−n) )  ⇒g^((n)) (0)= { ((0, n=1,2,...,2013,2016,...)),((−2015!, n=2014)),((2014.2015!, n=2015)) :}  Since the smallest n for which g^((n)) (0)≠0  is even, g(0)=1 is a max of g(x).  By the graph of g(x), which we vaugely construct   using the analysis we did on g(x), we see that there are   2 points where g(x)=0 − at x=1 and at some x=x_1 <0.    Then p′(x=1;x_1 )=0.  p′′(x)=2016.2015.2014(x^(2014) −x^(2013) )  Then at x_1 <0 we see that p′′(x)>0.  Therefore p(x) has a minimum at x=x_1 .  p′′(x=1)=0  p′′′(x)=2016.2015.2014x^(2012) (2014x−2013)  ⇒p′′′(x=1)=2016.2015.2014>0  ⇒p(x) has a saddle point at x=1.  Then we construct vaugely the graph of  p(x) and we see, that p(x)=0 has only  2 solutions. They can be found by inspection:  p(1)=p(−1)=0

Additional:Solutionstothepolynomial2014x20162016x2015+2016x2014=0p(x)=2014x20162016x2015+2016x2014Solution:Letsfindtheextremumsp=2016.2014x20152016.2015x2014+2016==2016(2014x20152015x2014+1)=2016g(x)letsanalyzeg(x):g(x)=2014.2015x2013(x1)g(x)canhaveextremaonlyatx=0andx=1.g(x)=2014.2015x2012(2014x2013)g(1)=2014.2015>0g(1)=0isaminofg(x)g(n)(x)=2014.2015D(n1)(x2014x2013)==2014.2015(2014!(2015n)!x2015n2013!(2014n)!x2014n)g(n)(0)={0,n=1,2,...,2013,2016,...2015!,n=20142014.2015!,n=2015Sincethesmallestnforwhichg(n)(0)0iseven,g(0)=1isamaxofg(x).Bythegraphofg(x),whichwevaugelyconstructusingtheanalysiswedidong(x),weseethatthereare2pointswhereg(x)=0atx=1andatsomex=x1<0.Thenp(x=1;x1)=0.p(x)=2016.2015.2014(x2014x2013)Thenatx1<0weseethatp(x)>0.Thereforep(x)hasaminimumatx=x1.p(x=1)=0p(x)=2016.2015.2014x2012(2014x2013)p(x=1)=2016.2015.2014>0p(x)hasasaddlepointatx=1.Thenweconstructvaugelythegraphofp(x)andwesee,thatp(x)=0hasonly2solutions.Theycanbefoundbyinspection:p(1)=p(1)=0

Commented by aleks041103 last updated on 31/Oct/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com