Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 157961 by mnjuly1970 last updated on 30/Oct/21

         prove that:    I=∫_0 ^( ∞) x^( 2) tanh(x).e^( −x) dx=(π^( 3) /8) −2

provethat:I=0x2tanh(x).exdx=π382

Answered by qaz last updated on 30/Oct/21

∫_0 ^∞ x^2 e^(−x) tanh xdx  =∫_0 ^∞ x^2 ((e^(−x) −e^(−3x) )/(1+e^(−2x) ))dx  =Σ_(n=0) ^∞ (−1)^n ∫_0 ^∞ x^2 (e^(−x) −e^(−3x) )e^(−2nx) dx  =Σ_(n=0) ^∞ (−1)^n ((2/((2n+1)^3 ))−(2/((2n+3)^3 )))  =2β(3)−2(−β(3)+1)  =(π^3 /8)−2

0x2extanhxdx=0x2exe3x1+e2xdx=n=0(1)n0x2(exe3x)e2nxdx=n=0(1)n(2(2n+1)32(2n+3)3)=2β(3)2(β(3)+1)=π382

Commented by mnjuly1970 last updated on 30/Oct/21

very nicd sir qaz

verynicdsirqaz

Answered by mnjuly1970 last updated on 30/Oct/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com