All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 157964 by HongKing last updated on 30/Oct/21
Solveforrealnumbers:4tan(x)+sin(5x)cos5(x)=0
Commented by tounghoungko last updated on 30/Oct/21
sin(5x)=5sinxcos4x−10sin3xcos2x+sin5x⇔4sinxcos4x+5sinxcos4x−10sin3xcos2x+sin5xcos5x=0⇔9sinxcos4x−10sin3xcos2x+sin5x=0sinx(9cos4x−10sin2xcos2x+sin4x)=0(1)sinx=0⇒x={2nπ(2n+1)π;n∈Z(2)9(1+cos2x2)2−52sin22x+(1−cos2x2)2=0letcos2x=t⇒9(1+t2)2−52(1−t2)+(1−t2)2=0⇒9t2+18t+94−(5−5t2)2+1−2t+t24=0⇒9t2+18t+9−10+10t2+1−2t+t2=0⇒20t2+16t=0⇒4t(5t+4)=0(3)4t=0⇒4cos2x=0⇒cos2x=cosπ2;x=±π4+nπ(4)t=−45⇒cos2x=−45⇒2x=±arccos(−45)+2nπ⇒x=±12arccos(−45)+nπ
Terms of Service
Privacy Policy
Contact: info@tinkutara.com