Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 157964 by HongKing last updated on 30/Oct/21

Solve for real numbers:  4tan(x) + ((sin(5x))/(cos^5 (x))) = 0

Solveforrealnumbers:4tan(x)+sin(5x)cos5(x)=0

Commented by tounghoungko last updated on 30/Oct/21

sin (5x)=5sin x cos^4 x−10sin^3 x cos^2 x+sin^5 x  ⇔ ((4sin x cos^4 x+5sin xcos^4 x−10sin^3 xcos^2 x+sin^5 x)/(cos^5 x))=0  ⇔9sin x cos^4 x−10sin^3 x cos^2 x+sin^5 x = 0  sin x(9cos^4 x−10sin^2 x cos^2 x+sin^4 x )=0  (1)sin x =0 ⇒x = { ((2nπ)),(((2n+1)π)) :} ; n∈Z  (2)9(((1+cos 2x)/2))^2 −(5/2)sin^2 2x +(((1−cos 2x)/2))^2 = 0  let cos 2x = t  ⇒9(((1+t)/2))^2 −(5/2)(1−t^2 )+(((1−t)/2))^2 = 0  ⇒((9t^2 +18t+9)/4)−(((5−5t^2 ))/2) +((1−2t+t^2 )/4) =0  ⇒9t^2 +18t+9−10+10t^2 +1−2t+t^2  =0  ⇒20t^2 +16t = 0  ⇒4t(5t+4)=0  (3) 4t=0⇒4cos 2x = 0  ⇒cos 2x = cos (π/2) ; x= ± (π/4) +nπ  (4) t=−(4/5)⇒cos 2x =−(4/5)   ⇒2x = ± arccos (−(4/5))+2nπ  ⇒x=± (1/2) arccos (−(4/5))+nπ

sin(5x)=5sinxcos4x10sin3xcos2x+sin5x4sinxcos4x+5sinxcos4x10sin3xcos2x+sin5xcos5x=09sinxcos4x10sin3xcos2x+sin5x=0sinx(9cos4x10sin2xcos2x+sin4x)=0(1)sinx=0x={2nπ(2n+1)π;nZ(2)9(1+cos2x2)252sin22x+(1cos2x2)2=0letcos2x=t9(1+t2)252(1t2)+(1t2)2=09t2+18t+94(55t2)2+12t+t24=09t2+18t+910+10t2+12t+t2=020t2+16t=04t(5t+4)=0(3)4t=04cos2x=0cos2x=cosπ2;x=±π4+nπ(4)t=45cos2x=452x=±arccos(45)+2nπx=±12arccos(45)+nπ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com