Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 15797 by tawa tawa last updated on 14/Jun/17

If  (a + bx)e^(y/x)  = x,   where  a and b are constant,   prove that,:   x^3 y′′ = (xy′ − y)^2

$$\mathrm{If}\:\:\left(\mathrm{a}\:+\:\mathrm{bx}\right)\mathrm{e}^{\mathrm{y}/\mathrm{x}} \:=\:\mathrm{x},\:\:\:\mathrm{where}\:\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{are}\:\mathrm{constant},\: \\ $$$$\mathrm{prove}\:\mathrm{that},:\:\:\:\mathrm{x}^{\mathrm{3}} \mathrm{y}''\:=\:\left(\mathrm{xy}'\:−\:\mathrm{y}\right)^{\mathrm{2}} \\ $$

Commented by tawa tawa last updated on 14/Jun/17

please any answer on this ?. please help. Thanks in advamce.

$$\mathrm{please}\:\mathrm{any}\:\mathrm{answer}\:\mathrm{on}\:\mathrm{this}\:?.\:\mathrm{please}\:\mathrm{help}.\:\mathrm{Thanks}\:\mathrm{in}\:\mathrm{advamce}. \\ $$

Answered by ajfour last updated on 14/Jun/17

               (a+bx)e^(y/x) =x        (d/dx)[(a+bx)e^(y/x) ]=(d/dx)(x)   (a+bx)e^(y/x) [((y′)/x)−(y/x^2 )]+be^(y/x) =1   ⇒       x[((y′)/x)−(y/x^2 )]+be^(y/x) =1  or       y′−(y/x)+be^(y/x) =1            (1−y′+(y/x))e^(−y/x) =b     differentiating again:  (−y′′+((y′)/x)−(y/x^2 ))e^(−y/x) +       (1−y′+(y/x))e^(−y/x) [−((y′)/x)+(y/x^2 )] =0  multiplying by e^(y/x) :  −y′′+((y′)/x)−(y/x^2 ) =−(1−y′+(y/x))(−((y′)/x)+(y/x^2 ))  multiplying by  (−x^3 ):   x^3 y′′−x^2 y′+xy=(x−xy′+y)(−xy′+y)  x^3 y′′−x^2 y′+xy =−x^2 y′+xy+(xy′)^2                                      −xyy′−xyy′+y^2   or   x^3 y′′= (xy′−y)^2   .

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({a}+{bx}\right){e}^{{y}/{x}} ={x} \\ $$$$\:\:\:\:\:\:\frac{{d}}{{dx}}\left[\left({a}+{bx}\right){e}^{{y}/{x}} \right]=\frac{{d}}{{dx}}\left({x}\right) \\ $$$$\:\left({a}+{bx}\right){e}^{{y}/{x}} \left[\frac{{y}'}{{x}}−\frac{{y}}{{x}^{\mathrm{2}} }\right]+{be}^{{y}/{x}} =\mathrm{1} \\ $$$$\:\Rightarrow\:\:\:\:\:\:\:{x}\left[\frac{{y}'}{{x}}−\frac{{y}}{{x}^{\mathrm{2}} }\right]+{be}^{{y}/{x}} =\mathrm{1} \\ $$$${or}\:\:\:\:\:\:\:{y}'−\frac{{y}}{{x}}+{be}^{{y}/{x}} =\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}−{y}'+\frac{{y}}{{x}}\right){e}^{−{y}/{x}} ={b} \\ $$$$\:\:\:{differentiating}\:{again}: \\ $$$$\left(−{y}''+\frac{{y}'}{{x}}−\frac{{y}}{{x}^{\mathrm{2}} }\right){e}^{−{y}/{x}} + \\ $$$$\:\:\:\:\:\left(\mathrm{1}−{y}'+\frac{{y}}{{x}}\right){e}^{−{y}/{x}} \left[−\frac{{y}'}{{x}}+\frac{{y}}{{x}^{\mathrm{2}} }\right]\:=\mathrm{0} \\ $$$${multiplying}\:{by}\:{e}^{{y}/{x}} : \\ $$$$−{y}''+\frac{{y}'}{{x}}−\frac{{y}}{{x}^{\mathrm{2}} }\:=−\left(\mathrm{1}−{y}'+\frac{{y}}{{x}}\right)\left(−\frac{{y}'}{{x}}+\frac{{y}}{{x}^{\mathrm{2}} }\right) \\ $$$${multiplying}\:{by}\:\:\left(−{x}^{\mathrm{3}} \right): \\ $$$$\:{x}^{\mathrm{3}} {y}''−{x}^{\mathrm{2}} {y}'+{xy}=\left({x}−{xy}'+{y}\right)\left(−{xy}'+{y}\right) \\ $$$${x}^{\mathrm{3}} {y}''−{x}^{\mathrm{2}} {y}'+{xy}\:=−{x}^{\mathrm{2}} {y}'+{xy}+\left({xy}'\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−{xyy}'−{xyy}'+{y}^{\mathrm{2}} \\ $$$${or}\:\:\:\boldsymbol{{x}}^{\mathrm{3}} \boldsymbol{{y}}''=\:\left(\boldsymbol{{xy}}'−\boldsymbol{{y}}\right)^{\mathrm{2}} \:\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com