Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 158079 by ajfour last updated on 30/Oct/21

Commented by ajfour last updated on 31/Oct/21

Sir, the question should state:  find sum of radii (in terms of  sides of △ABC) that touch  two sides of the said △ABC  and outer sides of right angled  △ constructed with the third  side of △ABC as the hypotenuse.  q(a,b,c)=r_A +r_B +r_C   .

$${Sir},\:{the}\:{question}\:{should}\:{state}: \\ $$$${find}\:{sum}\:{of}\:{radii}\:\left({in}\:{terms}\:{of}\right. \\ $$$$\left.{sides}\:{of}\:\bigtriangleup{ABC}\right)\:{that}\:{touch} \\ $$$${two}\:{sides}\:{of}\:{the}\:{said}\:\bigtriangleup{ABC} \\ $$$${and}\:{outer}\:{sides}\:{of}\:{right}\:{angled} \\ $$$$\bigtriangleup\:{constructed}\:{with}\:{the}\:{third} \\ $$$${side}\:{of}\:\bigtriangleup{ABC}\:{as}\:{the}\:{hypotenuse}. \\ $$$${q}\left({a},{b},{c}\right)={r}_{{A}} +{r}_{{B}} +{r}_{{C}} \:\:. \\ $$

Answered by mr W last updated on 31/Oct/21

Commented by mr W last updated on 01/Nov/21

AG=AF=(r/(tan (A/2)))  CK=CG=b−AG=b−(r/(tan (A/2)))  BH=BF=c−AF=c−(r/(tan (A/2)))  CE=b−(r/(tan (A/2)))+r=b−r((1/(tan (A/2)))−1)=b−αr  BE=c−(r/(tan (A/2)))+r=c−r((1/(tan (A/2)))−1)=c+αr  CE^2 +BE^2 =BC^2 =a^2   (b−αr)^2 +(c−αr)^2 =a^2   2α^2 r^2 −2α(b+c)r+b^2 +c^2 −a^2 =0  r=((α(b+c)+(√(α^2 (b+c)^2 −2α^2 (b^2 +c^2 −a^2 ))))/(2α^2 ))  r=r_A =(((b+c)−(√(2a^2 −(b−c)^2 )))/(2α))  α=(1/(tan (A/2)))−1=(√((1+cos A)/(1−cos A)))−1  cos A=((b^2 +c^2 −a^2 )/(2bc))  α=(√(((b+c)^2 −a^2 )/(a^2 −(b−c)^2 )))−1  ⇒r_A =((b+c−(√(2a^2 −(b−c)^2 )))/(2((√(((b+c)^2 −a^2 )/(a^2 −(b−c)^2 )))−1)))  example: a=b=c  r_A =(((2−(√2))a)/(2((√3)−1)))=(((2−(√2))((√3)+1)a)/4)≈0.4a

$${AG}={AF}=\frac{{r}}{\mathrm{tan}\:\frac{{A}}{\mathrm{2}}} \\ $$$${CK}={CG}={b}−{AG}={b}−\frac{{r}}{\mathrm{tan}\:\frac{{A}}{\mathrm{2}}} \\ $$$${BH}={BF}={c}−{AF}={c}−\frac{{r}}{\mathrm{tan}\:\frac{{A}}{\mathrm{2}}} \\ $$$${CE}={b}−\frac{{r}}{\mathrm{tan}\:\frac{{A}}{\mathrm{2}}}+{r}={b}−{r}\left(\frac{\mathrm{1}}{\mathrm{tan}\:\frac{{A}}{\mathrm{2}}}−\mathrm{1}\right)={b}−\alpha{r} \\ $$$${BE}={c}−\frac{{r}}{\mathrm{tan}\:\frac{{A}}{\mathrm{2}}}+{r}={c}−{r}\left(\frac{\mathrm{1}}{\mathrm{tan}\:\frac{{A}}{\mathrm{2}}}−\mathrm{1}\right)={c}+\alpha{r} \\ $$$${CE}^{\mathrm{2}} +{BE}^{\mathrm{2}} ={BC}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$$\left({b}−\alpha{r}\right)^{\mathrm{2}} +\left({c}−\alpha{r}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$$\mathrm{2}\alpha^{\mathrm{2}} {r}^{\mathrm{2}} −\mathrm{2}\alpha\left({b}+{c}\right){r}+{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} =\mathrm{0} \\ $$$${r}=\frac{\alpha\left({b}+{c}\right)+\sqrt{\alpha^{\mathrm{2}} \left({b}+{c}\right)^{\mathrm{2}} −\mathrm{2}\alpha^{\mathrm{2}} \left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}}{\mathrm{2}\alpha^{\mathrm{2}} } \\ $$$${r}={r}_{{A}} =\frac{\left({b}+{c}\right)−\sqrt{\mathrm{2}{a}^{\mathrm{2}} −\left({b}−{c}\right)^{\mathrm{2}} }}{\mathrm{2}\alpha} \\ $$$$\alpha=\frac{\mathrm{1}}{\mathrm{tan}\:\frac{{A}}{\mathrm{2}}}−\mathrm{1}=\sqrt{\frac{\mathrm{1}+\mathrm{cos}\:{A}}{\mathrm{1}−\mathrm{cos}\:{A}}}−\mathrm{1} \\ $$$$\mathrm{cos}\:{A}=\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} }{\mathrm{2}{bc}} \\ $$$$\alpha=\sqrt{\frac{\left({b}+{c}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} −\left({b}−{c}\right)^{\mathrm{2}} }}−\mathrm{1} \\ $$$$\Rightarrow{r}_{{A}} =\frac{{b}+{c}−\sqrt{\mathrm{2}{a}^{\mathrm{2}} −\left({b}−{c}\right)^{\mathrm{2}} }}{\mathrm{2}\left(\sqrt{\frac{\left({b}+{c}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} −\left({b}−{c}\right)^{\mathrm{2}} }}−\mathrm{1}\right)} \\ $$$${example}:\:{a}={b}={c} \\ $$$${r}_{{A}} =\frac{\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){a}}{\mathrm{2}\left(\sqrt{\mathrm{3}}−\mathrm{1}\right)}=\frac{\left(\mathrm{2}−\sqrt{\mathrm{2}}\right)\left(\sqrt{\mathrm{3}}+\mathrm{1}\right){a}}{\mathrm{4}}\approx\mathrm{0}.\mathrm{4}{a} \\ $$

Commented by ajfour last updated on 01/Nov/21

An Excellent sol^n ! Sir. and   i′ve replaced my sol^n . please  go through..

$$\mathcal{A}{n}\:\mathscr{E}{xcellent}\:{sol}^{{n}} !\:{Sir}.\:{and} \\ $$$$\:{i}'{ve}\:{replaced}\:{my}\:{sol}^{{n}} .\:{please} \\ $$$${go}\:{through}.. \\ $$

Commented by mr W last updated on 01/Nov/21

yes, you are right!

$${yes},\:{you}\:{are}\:{right}! \\ $$

Commented by ajfour last updated on 01/Nov/21

lets equate our results sir!

$${lets}\:{equate}\:{our}\:{results}\:{sir}! \\ $$

Answered by ajfour last updated on 31/Oct/21

Commented by ajfour last updated on 01/Nov/21

2×Area=2r^2 +(b+c)r      +r{(acos θ−r)+(asin θ−r)}      =2△_(ABC) +(a^2 sin θcos θ)  c−(asin θ−r)=b−(acos θ−r)  ⇒   a(sin θ−cos θ)=c−b  ⇒ a^2 (1−2sin θcos θ)=(c−b)^2     a^2 (sin θ+cos θ)=(√((c−b)^2 +4a^2 sin θcos θ))     =(√(2a^2 −(c−b)^2 ))    ⇒ (b+c)r+ar(sin θ+cos θ)          = 2△+a^2 sin θcos θ  hence    ((2r)/a)=((4△+a^2 −(b−c)^2 )/(a(b+c)+(√(2a^2 −(c−b)^2 ))))  e.g.  say △ABC is eql.  ((2r)/a)=(((√3)+1)/(2+(√2)))    ⇒  r=((((√3)+1)/( (√2)+1)))(a/(2(√2)))     or   r=(a/4)((√3)+1)(2−(√2))             r≈0.400099577a

$$\mathrm{2}×{Area}=\mathrm{2}{r}^{\mathrm{2}} +\left({b}+{c}\right){r} \\ $$$$\:\:\:\:+{r}\left\{\left({a}\mathrm{cos}\:\theta−{r}\right)+\left({a}\mathrm{sin}\:\theta−{r}\right)\right\} \\ $$$$\:\:\:\:=\mathrm{2}\bigtriangleup_{{ABC}} +\left({a}^{\mathrm{2}} \mathrm{sin}\:\theta\mathrm{cos}\:\theta\right) \\ $$$${c}−\left({a}\mathrm{sin}\:\theta−{r}\right)={b}−\left({a}\mathrm{cos}\:\theta−{r}\right) \\ $$$$\Rightarrow\:\:\:{a}\left(\mathrm{sin}\:\theta−\mathrm{cos}\:\theta\right)={c}−{b} \\ $$$$\Rightarrow\:{a}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{2sin}\:\theta\mathrm{cos}\:\theta\right)=\left({c}−{b}\right)^{\mathrm{2}} \\ $$$$ \\ $$$${a}^{\mathrm{2}} \left(\mathrm{sin}\:\theta+\mathrm{cos}\:\theta\right)=\sqrt{\left({c}−{b}\right)^{\mathrm{2}} +\mathrm{4}{a}^{\mathrm{2}} \mathrm{sin}\:\theta\mathrm{cos}\:\theta} \\ $$$$\:\:\:=\sqrt{\mathrm{2}{a}^{\mathrm{2}} −\left({c}−{b}\right)^{\mathrm{2}} } \\ $$$$ \\ $$$$\Rightarrow\:\left({b}+{c}\right){r}+{ar}\left(\mathrm{sin}\:\theta+\mathrm{cos}\:\theta\right) \\ $$$$\:\:\:\:\:\:\:\:=\:\mathrm{2}\bigtriangleup+{a}^{\mathrm{2}} \mathrm{sin}\:\theta\mathrm{cos}\:\theta \\ $$$${hence} \\ $$$$\:\:\frac{\mathrm{2}{r}}{{a}}=\frac{\mathrm{4}\bigtriangleup+{a}^{\mathrm{2}} −\left({b}−{c}\right)^{\mathrm{2}} }{{a}\left({b}+{c}\right)+\sqrt{\mathrm{2}{a}^{\mathrm{2}} −\left({c}−{b}\right)^{\mathrm{2}} }} \\ $$$${e}.{g}.\:\:{say}\:\bigtriangleup{ABC}\:{is}\:{eql}. \\ $$$$\frac{\mathrm{2}{r}}{{a}}=\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\mathrm{2}+\sqrt{\mathrm{2}}}\:\:\:\:\Rightarrow\:\:{r}=\left(\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\:\sqrt{\mathrm{2}}+\mathrm{1}}\right)\frac{{a}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\:\:\:{or}\:\:\:{r}=\frac{{a}}{\mathrm{4}}\left(\sqrt{\mathrm{3}}+\mathrm{1}\right)\left(\mathrm{2}−\sqrt{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{r}\approx\mathrm{0}.\mathrm{400099577}{a} \\ $$

Commented by ajfour last updated on 01/Nov/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com