Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 1581 by 112358 last updated on 21/Aug/15

Find a function f(x) satisfying  the following equation.  ∫_a ^( b) [(1/2){f(x)}^2 −(√({f(x)}^2 +{(d/dx)(f(x))}^2 ))]dx=0  b>0,a>0 , b≠a.

$${Find}\:{a}\:{function}\:{f}\left({x}\right)\:{satisfying} \\ $$ $${the}\:{following}\:{equation}. \\ $$ $$\int_{{a}} ^{\:{b}} \left[\frac{\mathrm{1}}{\mathrm{2}}\left\{{f}\left({x}\right)\right\}^{\mathrm{2}} −\sqrt{\left\{{f}\left({x}\right)\right\}^{\mathrm{2}} +\left\{\frac{{d}}{{dx}}\left({f}\left({x}\right)\right)\right\}^{\mathrm{2}} }\right]{dx}=\mathrm{0} \\ $$ $${b}>\mathrm{0},{a}>\mathrm{0}\:,\:{b}\neq{a}.\:\: \\ $$

Commented by123456 last updated on 21/Aug/15

(1/2)f^2 −(√(f^2 +(f′)^2 ))=0  f^2 =2(√(f^2 +(f′)^2 ))  f^4 =4f^2 +4(f′)^2

$$\frac{\mathrm{1}}{\mathrm{2}}{f}^{\mathrm{2}} −\sqrt{{f}^{\mathrm{2}} +\left({f}'\right)^{\mathrm{2}} }=\mathrm{0} \\ $$ $${f}^{\mathrm{2}} =\mathrm{2}\sqrt{{f}^{\mathrm{2}} +\left({f}'\right)^{\mathrm{2}} } \\ $$ $${f}^{\mathrm{4}} =\mathrm{4}{f}^{\mathrm{2}} +\mathrm{4}\left({f}'\right)^{\mathrm{2}} \\ $$

Commented by112358 last updated on 25/Aug/15

f^4 =4f^2 +4(f^′ )^2   f^′ =±(1/2)(√(f^4 −4f^2 ))  2f^′ =±f(√(f^2 −4))  2(df/dx)=±f(√(f^2 −4))  Integration by separation of variables  ⇒2∫(df/(f(√(f^2 −4))))=±∫dx=K±x  let f(x)=2secu⇒df=2secu×tanu du  ∴f(√(f^2 −4))=2secu(√(4sec^2 u−4))  =(2secu)(2(√(sec^2 u−1)))  ∵tan^2 u=sec^2 u−1  ⇒f(√(f^2 −4))=4secu(√(tan^2 u))=4secutanu   (if tanu>0)  ∴2∫((2secutanu)/(4secutanu))du=K±x  ∫du=K±x⇒u=K±x  ∵f(x)=2secu⇒u=cos^(−1) ((2/(f(x))))  ∴cos^(−1) ((2/(f(x))))=K±x  (2/(f(x)))=cos(K±x)  f(x)=2sec(K±x)

$${f}^{\mathrm{4}} =\mathrm{4}{f}^{\mathrm{2}} +\mathrm{4}\left({f}^{'} \right)^{\mathrm{2}} \\ $$ $${f}^{'} =\pm\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{f}^{\mathrm{4}} −\mathrm{4}{f}^{\mathrm{2}} } \\ $$ $$\mathrm{2}{f}^{'} =\pm{f}\sqrt{{f}^{\mathrm{2}} −\mathrm{4}} \\ $$ $$\mathrm{2}\frac{{df}}{{dx}}=\pm{f}\sqrt{{f}^{\mathrm{2}} −\mathrm{4}} \\ $$ $${Integration}\:{by}\:{separation}\:{of}\:{variables} \\ $$ $$\Rightarrow\mathrm{2}\int\frac{{df}}{{f}\sqrt{{f}^{\mathrm{2}} −\mathrm{4}}}=\pm\int{dx}={K}\pm{x} \\ $$ $${let}\:{f}\left({x}\right)=\mathrm{2}{secu}\Rightarrow{df}=\mathrm{2}{secu}×{tanu}\:{du} \\ $$ $$\therefore{f}\sqrt{{f}^{\mathrm{2}} −\mathrm{4}}=\mathrm{2}{secu}\sqrt{\mathrm{4}{sec}^{\mathrm{2}} {u}−\mathrm{4}} \\ $$ $$=\left(\mathrm{2}{secu}\right)\left(\mathrm{2}\sqrt{{sec}^{\mathrm{2}} {u}−\mathrm{1}}\right) \\ $$ $$\because{tan}^{\mathrm{2}} {u}={sec}^{\mathrm{2}} {u}−\mathrm{1} \\ $$ $$\Rightarrow{f}\sqrt{{f}^{\mathrm{2}} −\mathrm{4}}=\mathrm{4}{secu}\sqrt{{tan}^{\mathrm{2}} {u}}=\mathrm{4}{secutanu}\:\:\:\left({if}\:{tanu}>\mathrm{0}\right) \\ $$ $$\therefore\mathrm{2}\int\frac{\mathrm{2}{secutanu}}{\mathrm{4}{secutanu}}{du}={K}\pm{x} \\ $$ $$\int{du}={K}\pm{x}\Rightarrow{u}={K}\pm{x} \\ $$ $$\because{f}\left({x}\right)=\mathrm{2}{secu}\Rightarrow{u}={cos}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{{f}\left({x}\right)}\right) \\ $$ $$\therefore{cos}^{−\mathrm{1}} \left(\frac{\mathrm{2}}{{f}\left({x}\right)}\right)={K}\pm{x} \\ $$ $$\frac{\mathrm{2}}{{f}\left({x}\right)}={cos}\left({K}\pm{x}\right) \\ $$ $${f}\left({x}\right)=\mathrm{2}{sec}\left({K}\pm{x}\right)\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com