Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 1581 by 112358 last updated on 21/Aug/15

Find a function f(x) satisfying  the following equation.  ∫_a ^( b) [(1/2){f(x)}^2 −(√({f(x)}^2 +{(d/dx)(f(x))}^2 ))]dx=0  b>0,a>0 , b≠a.

Findafunctionf(x)satisfying thefollowingequation. ab[12{f(x)}2{f(x)}2+{ddx(f(x))}2]dx=0 b>0,a>0,ba.

Commented by123456 last updated on 21/Aug/15

(1/2)f^2 −(√(f^2 +(f′)^2 ))=0  f^2 =2(√(f^2 +(f′)^2 ))  f^4 =4f^2 +4(f′)^2

12f2f2+(f)2=0 f2=2f2+(f)2 f4=4f2+4(f)2

Commented by112358 last updated on 25/Aug/15

f^4 =4f^2 +4(f^′ )^2   f^′ =±(1/2)(√(f^4 −4f^2 ))  2f^′ =±f(√(f^2 −4))  2(df/dx)=±f(√(f^2 −4))  Integration by separation of variables  ⇒2∫(df/(f(√(f^2 −4))))=±∫dx=K±x  let f(x)=2secu⇒df=2secu×tanu du  ∴f(√(f^2 −4))=2secu(√(4sec^2 u−4))  =(2secu)(2(√(sec^2 u−1)))  ∵tan^2 u=sec^2 u−1  ⇒f(√(f^2 −4))=4secu(√(tan^2 u))=4secutanu   (if tanu>0)  ∴2∫((2secutanu)/(4secutanu))du=K±x  ∫du=K±x⇒u=K±x  ∵f(x)=2secu⇒u=cos^(−1) ((2/(f(x))))  ∴cos^(−1) ((2/(f(x))))=K±x  (2/(f(x)))=cos(K±x)  f(x)=2sec(K±x)

f4=4f2+4(f)2 f=±12f44f2 2f=±ff24 2dfdx=±ff24 Integrationbyseparationofvariables 2dfff24=±dx=K±x letf(x)=2secudf=2secu×tanudu ff24=2secu4sec2u4 =(2secu)(2sec2u1) tan2u=sec2u1 ff24=4secutan2u=4secutanu(iftanu>0) 22secutanu4secutanudu=K±x du=K±xu=K±x f(x)=2secuu=cos1(2f(x)) cos1(2f(x))=K±x 2f(x)=cos(K±x) f(x)=2sec(K±x)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com