Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 1582 by 112358 last updated on 21/Aug/15

Let φ and ε denote functions of x  where φ is odd and ε is even ∀x∈R.  Is it generally true that integrating  an odd function gives an even  function and vice versa?   ∫φ_1 (x) dx=ε_1 (x)+C ?  and ∫φ_2 (x)dx=ε_2 (x)+K?

$${Let}\:\phi\:{and}\:\varepsilon\:{denote}\:{functions}\:{of}\:{x} \\ $$$${where}\:\phi\:{is}\:{odd}\:{and}\:\varepsilon\:{is}\:{even}\:\forall{x}\in\mathbb{R}. \\ $$$${Is}\:{it}\:{generally}\:{true}\:{that}\:{integrating} \\ $$$${an}\:{odd}\:{function}\:{gives}\:{an}\:{even} \\ $$$${function}\:{and}\:{vice}\:{versa}?\: \\ $$$$\int\phi_{\mathrm{1}} \left({x}\right)\:{dx}=\varepsilon_{\mathrm{1}} \left({x}\right)+{C}\:? \\ $$$${and}\:\int\phi_{\mathrm{2}} \left({x}\right){dx}=\varepsilon_{\mathrm{2}} \left({x}\right)+{K}? \\ $$$$ \\ $$$$ \\ $$

Answered by 123456 last updated on 23/Aug/15

lets φ a odd function and ε a even function  continuous and dirrentebiable into R, then  φ(−x)=−φ(x)  [φ(−x)]′=[−φ(x)]′  −φ′(−x)=−φ′(x)  φ′(−x)=φ′(x)  and  ε(−x)=ε(x)  [ε(−x)]′=[ε(x)]′  −ε′(−x)=ε′(x)  ε′(−x)=ε′(x)  then lets φ a odd function continuous and integable into R  take ε(x):=∫_0 ^x φ(x)dx  ε(−x)=∫_0 ^(−x) φ(t)dt+C  u=−t⇒du=−dt  t=0⇒u=0  t=−x⇒u=x  ε(−x)=−∫_0 ^x φ(−u)du=∫_0 ^x φ(u)du=ε(x)  then ε is a even function and you can write  ∫φ(x)dx=∫_0 ^x φ(x)dx+C=ε(x)+C  to finish lets ε(x) a even function contonuous and integrable on R  take φ(x):=∫_0 ^x ε(t)dt  φ(−x)=∫_0 ^(−x) ε(t)dt  u=−t⇒du=−dt  t=0⇒u=0  t=−x⇒u=xw  φ(−x)=−∫_0 ^x ε(−u)du=−∫_0 ^x ε(u)du=−φ(x)  then φ is a odd function and also  ∫ε(x)dx=∫_0 ^x ε(t)dt+C=φ(x)+C

$$\mathrm{lets}\:\phi\:\mathrm{a}\:\mathrm{odd}\:\mathrm{function}\:\mathrm{and}\:\varepsilon\:\mathrm{a}\:\mathrm{even}\:\mathrm{function} \\ $$$$\mathrm{continuous}\:\mathrm{and}\:\mathrm{dirrentebiable}\:\mathrm{into}\:\mathbb{R},\:\mathrm{then} \\ $$$$\phi\left(−{x}\right)=−\phi\left({x}\right) \\ $$$$\left[\phi\left(−{x}\right)\right]'=\left[−\phi\left({x}\right)\right]' \\ $$$$−\phi'\left(−{x}\right)=−\phi'\left({x}\right) \\ $$$$\phi'\left(−{x}\right)=\phi'\left({x}\right) \\ $$$$\mathrm{and} \\ $$$$\varepsilon\left(−{x}\right)=\varepsilon\left({x}\right) \\ $$$$\left[\varepsilon\left(−{x}\right)\right]'=\left[\varepsilon\left({x}\right)\right]' \\ $$$$−\varepsilon'\left(−{x}\right)=\varepsilon'\left({x}\right) \\ $$$$\varepsilon'\left(−{x}\right)=\varepsilon'\left({x}\right) \\ $$$$\mathrm{then}\:\mathrm{lets}\:\phi\:\mathrm{a}\:\mathrm{odd}\:\mathrm{function}\:\mathrm{continuous}\:\mathrm{and}\:\mathrm{integable}\:\mathrm{into}\:\mathbb{R} \\ $$$$\mathrm{take}\:\varepsilon\left({x}\right):=\underset{\mathrm{0}} {\overset{{x}} {\int}}\phi\left({x}\right){dx} \\ $$$$\varepsilon\left(−{x}\right)=\underset{\mathrm{0}} {\overset{−{x}} {\int}}\phi\left({t}\right){dt}+\mathrm{C} \\ $$$${u}=−{t}\Rightarrow{du}=−{dt} \\ $$$${t}=\mathrm{0}\Rightarrow{u}=\mathrm{0} \\ $$$${t}=−{x}\Rightarrow{u}={x} \\ $$$$\varepsilon\left(−{x}\right)=−\underset{\mathrm{0}} {\overset{{x}} {\int}}\phi\left(−{u}\right){du}=\underset{\mathrm{0}} {\overset{{x}} {\int}}\phi\left({u}\right){du}=\varepsilon\left({x}\right) \\ $$$$\mathrm{then}\:\varepsilon\:\mathrm{is}\:\mathrm{a}\:\mathrm{even}\:\mathrm{function}\:\mathrm{and}\:\mathrm{you}\:\mathrm{can}\:\mathrm{write} \\ $$$$\int\phi\left({x}\right){dx}=\underset{\mathrm{0}} {\overset{{x}} {\int}}\phi\left({x}\right){dx}+\mathrm{C}=\varepsilon\left({x}\right)+\mathrm{C} \\ $$$$\mathrm{to}\:\mathrm{finish}\:\mathrm{lets}\:\varepsilon\left({x}\right)\:\mathrm{a}\:\mathrm{even}\:\mathrm{function}\:\mathrm{contonuous}\:\mathrm{and}\:\mathrm{integrable}\:\mathrm{on}\:\mathbb{R} \\ $$$$\mathrm{take}\:\phi\left({x}\right):=\underset{\mathrm{0}} {\overset{{x}} {\int}}\varepsilon\left({t}\right){dt} \\ $$$$\phi\left(−{x}\right)=\underset{\mathrm{0}} {\overset{−{x}} {\int}}\varepsilon\left({t}\right){dt} \\ $$$${u}=−{t}\Rightarrow{du}=−{dt} \\ $$$${t}=\mathrm{0}\Rightarrow{u}=\mathrm{0} \\ $$$${t}=−{x}\Rightarrow{u}={xw} \\ $$$$\phi\left(−{x}\right)=−\underset{\mathrm{0}} {\overset{{x}} {\int}}\varepsilon\left(−{u}\right){du}=−\underset{\mathrm{0}} {\overset{{x}} {\int}}\varepsilon\left({u}\right){du}=−\phi\left({x}\right) \\ $$$$\mathrm{then}\:\phi\:\mathrm{is}\:\mathrm{a}\:\mathrm{odd}\:\mathrm{function}\:\mathrm{and}\:\mathrm{also} \\ $$$$\int\varepsilon\left({x}\right){dx}=\underset{\mathrm{0}} {\overset{{x}} {\int}}\varepsilon\left({t}\right){dt}+\mathrm{C}=\phi\left({x}\right)+\mathrm{C} \\ $$

Commented by 112358 last updated on 23/Aug/15

Thanks

$${Thanks}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com