All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 1582 by 112358 last updated on 21/Aug/15
Letϕandεdenotefunctionsofxwhereϕisoddandεiseven∀x∈R.Isitgenerallytruethatintegratinganoddfunctiongivesanevenfunctionandviceversa?∫ϕ1(x)dx=ε1(x)+C?and∫ϕ2(x)dx=ε2(x)+K?
Answered by 123456 last updated on 23/Aug/15
letsϕaoddfunctionandεaevenfunctioncontinuousanddirrentebiableintoR,thenϕ(−x)=−ϕ(x)[ϕ(−x)]′=[−ϕ(x)]′−ϕ′(−x)=−ϕ′(x)ϕ′(−x)=ϕ′(x)andε(−x)=ε(x)[ε(−x)]′=[ε(x)]′−ε′(−x)=ε′(x)ε′(−x)=ε′(x)thenletsϕaoddfunctioncontinuousandintegableintoRtakeε(x):=∫x0ϕ(x)dxε(−x)=∫−x0ϕ(t)dt+Cu=−t⇒du=−dtt=0⇒u=0t=−x⇒u=xε(−x)=−∫x0ϕ(−u)du=∫x0ϕ(u)du=ε(x)thenεisaevenfunctionandyoucanwrite∫ϕ(x)dx=∫x0ϕ(x)dx+C=ε(x)+Ctofinishletsε(x)aevenfunctioncontonuousandintegrableonRtakeϕ(x):=∫x0ε(t)dtϕ(−x)=∫−x0ε(t)dtu=−t⇒du=−dtt=0⇒u=0t=−x⇒u=xwϕ(−x)=−∫x0ε(−u)du=−∫x0ε(u)du=−ϕ(x)thenϕisaoddfunctionandalso∫ε(x)dx=∫x0ε(t)dt+C=ϕ(x)+C
Commented by 112358 last updated on 23/Aug/15
Thanks
Terms of Service
Privacy Policy
Contact: info@tinkutara.com