Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 158255 by daus last updated on 01/Nov/21

Commented by daus last updated on 01/Nov/21

solve the x

solvethex

Commented by cortano last updated on 01/Nov/21

((2/3))^(2/x) −((2/3))^(1/x) −1=0  ((2/3))^(1/x)  = q   ⇒q^2 −q−1=0  ⇒q=((1+(√5))/2) , ((2/3))^(1/x) =((1+(√5))/2)  ⇒(1/x)= log _(2/3) (((1+(√5))/2))  ⇒x= log _((((1+(√5))/2))) ((2/3))

(23)2x(23)1x1=0(23)1x=qq2q1=0q=1+52,(23)1x=1+521x=log23(1+52)x=log(1+52)(23)

Answered by MathsFan last updated on 01/Nov/21

(4^(1/x) /4^(1/x) )−(6^(1/x) /4^(1/x) )=(9^(1/x) /4^(1/x) )   1−((3^(1/x) •2^(1/x) )/(2^(1/x) •2^(1/x) ))=(3^((1/x)•2) /2^((1/x)•2) )   1−((3^(1/x) /2^(1/x) ))=((3^(1/x) /2^(1/x) ))^2    ((3^(1/x) /2^(1/x) ))^2 +((3^(1/x) /2^(1/x) ))=1      ((3^(1/x) /2^(1/x) ))^2 +((3^(1/x) /2^(1/x) ))+(1/4)=1+(1/4)   [((3^(1/x) /2^(1/x) ))+(1/2)]^2 =(5/4)   ((3^(1/x) /2^(1/x) ))=((±(√5))/2)−(1/2)   ln((3/2))^(1/x) =ln(((√5)−1)/2)   (1/x)=((ln(((√5)−1)/2))/(ln((3/2))))   x_1 =((ln((3/2)))/(ln(((√5)−1)/2)))    x_2 =((ln((3/2)))/(ln((−(√5)−1)/2)))

41x41x61x41x=91x41x131x21x21x21x=31x221x21(31x21x)=(31x21x)2(31x21x)2+(31x21x)=1(31x21x)2+(31x21x)+14=1+14[(31x21x)+12]2=54(31x21x)=±5212ln(32)1x=ln5121x=ln512ln(32)x1=ln(32)ln512x2=ln(32)ln512

Answered by yeti123 last updated on 01/Nov/21

4^(1/x)  − 6^(1/x)  = 9^(1/x)   ((4/6))^(1/x)  − 1 = ((9/6))^(1/x)   ((2/3))^(1/x)  − 1 − ((3/2))^(1/x)  = 0  y = (2/3)^(1/x)  ⇒  y − 1 − (1/y) = 0  y^2  − y − 1 = 0  ⋮

41/x61/x=91/x(46)1/x1=(96)1/x(23)1/x1(32)1/x=0y=(2/3)1/xy11y=0y2y1=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com